Synthesis and Antiplatelet-Activity Evaluation of α-Methylidene-γ-butyrolactones Bearing 3,4-Dihydroquinolin-2(1H)-one Moieties

by Cherng-Chyi Tzeng*, I.-Li Chen, and Yeh-Long Chen
School of Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, Republic of China
and Tai-Chi Wang
Department of Pharmacy, Tajen Institute of Technology, Pingtung, Taiwan, Republic of China
and Ya-Ling Chang and Che-Ming Teng
Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China

Abstract

In continuation of our search for potent antiplatelet agents, we have synthesized and evaluated several α -methylidene- γ-butyrolactones bearing 3,4-dihydroquinolin-2(1 H)-one moieties. O-Alkylation of 3,4-dihydro-8-hydroxyquinolin- $2(1 \mathrm{H}$)-one (1) with chloroacetone under basic conditions afforded 3,4-dihydro-8-(2-oxopro-poxy)quinolin-2(1H)-one (2a) and tricyclic 2,3,6,7-tetrahydro-3-hydroxy-3-methyl-5H-pyrido[1,2,3-de][1,4]-benzoxazin-5-one (3a) in a ratio of $1: 2.84$. Their Reformatsky-type condensation with ethyl 2 -(bromomethyl)-prop-2-enoate furnished 3,4-dihydro-8-[(2,3,4,5-tetrahydro-2-methyl-4-methylidene-5-oxofuran-2-yl)methoxy]-quinolin- $2(1 H)$-one ($\mathbf{4 a}$), which shows antiplatelet activity, in 70% yield. Its $2^{\prime}-\mathrm{Ph}$ derivatives, and 6- and 7substituted analogs were also obtained from the corresponding 3,4-dihydroquinolin-2(1H)-ones via alkylation and the Reformatsky-type condensation. Of these compounds, 3,4-dihydro-7-[(2,3,4,5-tetrahydro-4-methyl-idene-5-oxo-2-phenylfuran-2-yl)methoxy]quinolin-2(1H)-one ($\mathbf{1 0 b}$) was the most active against arachidonic acid (AA) induced platelet aggregation with an $I C_{50}$ of $0.23 \mu \mathrm{M}$. For the inhibition of platelet-activating factor (PAF) induced aggregation, 6-\{[2-(4-fluorophenyl)-2,3,4,5-tetrahydro-4-methylidene-5-oxofuran-2-yl]methoxy $\}$-3,4-dihydroquinolin- $2(1 H)$-one $(9 \mathbf{c})$ was the most potent with an $I C_{50}$ value of $1.83 \mu \mathrm{~m}$.

Introduction. - Recently, we have synthesized and evaluated the cardiovascular activities of certain α-methylidene- γ-butyrolactones bearing heterocycles such as coumarins, flavones, xanthones, quinolines, and quinolin-2(1H)-ones [1-3]. Among these heterocycles, coumarins exhibited the most potent inhibitory activities on the high- K^{+}-medium, Ca^{2+}-induced vasoconstriction, and the norepinephrine-induced phasic and tonic vasoconstrictions, while quinolin- $2(1 H)$-ones proved to be the most active against platelet aggregation [2][3]. One of the most potent antiplatelet agents, 6-[(2,3,4,5-tetrahydro-4-methylidene-5-oxo-2-phenylfuran-2-yl)methoxy]quinolin-2(1H)one (CCT-62), has been proved to be an inhibitor of phosphodiesterases, and its antiplatelet effect is mainly mediated by elevation of cyclic-AMP levels [4]. In the continuation of our search for more potent antiplatelet agents, we report herein the preparation, antiplatelet-activity evaluation, and structure-activity relationships of several α-methylidene- γ-butyrolactones bearing 3,4-dihydroquinolin-2(1H)-one moieties, saturated analogs of CCT-62. The cardiovascular and neuroprotective activities of certain quinolin-2(1H)-ones and 3,4-dihydroquinolin-2($1 H$)-ones substituted with various side chains have been reported earlier [5-9].

CCT-62
Results and Discussion. - The preparation of 3,4-dihydro-8-[(2,3,4,5-tetrahydro-2-methyl-4-methylidene-5-oxofuran-2-yl)methoxy]quinolin-2(1H)-one (4a) and its $2^{\prime}-\mathrm{Ph}$ derivatives is illustrated in Scheme 1. 3,4-Dihydro-8-hydroxyquinolin-2(1H)-one (1)

Zn , THF

4

	R	Ratio of 2/3
a	Me	$1: 2.84$
b	Ph	$1.39: 1$
c	$4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$	$1.43: 1$
d	$4-\mathrm{Ph}-\mathrm{C}_{6} \mathrm{H}_{4}$	$1.32: 1$
e	$4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}$	$1: 0$
f	$4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$	$0: 1$

was treated with chloroacetone under basic conditions to afford 3,4-dihydro-8-(2-oxopropoxy)quinolin-2(1H)-one (2a) and 2,3,6,7-tetrahydro-3-hydroxy-3-methyl-5Hpyrido [1,2,3-de][1,4]benzoxazin-5-one (3a) in a ratio of $1: 2.84$ (75% yield). Compounds 2a and 3a are interconvertible: when the mixture was subjected to a Reformatsky-type condensation, 4a was obtained in 70% yield. Accordingly, $\mathbf{1}$ was reacted with 2-bromoacetophenone, 2-bromo-4'-fluoroacetophenone, and 2-bromo-4'phenylacetophenone, respectively, under the same reaction conditions to give $\mathbf{2 b}-\mathbf{d}$ and $\mathbf{3 b}$ - d in ratios of $1.32: 1$ to $1.43: 1$, based on the integration of $\mathrm{CH}_{2} \mathrm{O}{ }^{1} \mathrm{H}-\mathrm{NMR}$ signals. An electron-donating substituent $\left(\mathrm{R}=4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ retarded ring cyclization, and only $\mathbf{2 e}$ was isolated, while an electron-withdrawing substituent $(\mathrm{R}=4$ -$\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$) favored the formation of $\mathbf{3 f}$. That alkylation of $\mathbf{1}$ occurred at $\mathrm{HO}-\mathrm{C}(8)$ rather than at $\mathrm{N}(1)$ or $\mathrm{C}(2)=\mathrm{O}$ was shown by the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HETCOR spectrum, which reveals the correlation of $\mathrm{CH}_{2}\left(1^{\prime}\right)$ protons (5.53 ppm , singlet) with C -atoms resonating at $71.50\left({ }^{1} J\right)$ and $144.87\left({ }^{3} J\right)$, corresponding to $C\left(1^{\prime}\right)$ and $C(8)$. The structure of $\mathbf{3 f}$ was confirmed by the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum in which the $\mathrm{CH}_{2}(2)$ protons are magnetically nonequivalent, and two distinct doublets $(J=11.4 \mathrm{~Hz})$ at 3.80 and 3.99 ppm ($A B$ type) were observed. Furthermore, the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HETCOR spectrum revealed the correlation of $\mathrm{CH}_{2}(2)$ protons with C-atoms resonating at $74.35\left({ }^{1} \mathrm{~J}\right), 83.04\left({ }^{2} \mathrm{~J}\right)$, and $144.53\left({ }^{3} \mathrm{~J}\right)$ ppm, corresponding to $\mathrm{C}(2), \mathrm{C}(3)$, and $\mathrm{C}(11)$, respectively. Reformatsky-type condensation of $\mathbf{2 b}$-d and $\mathbf{3 b}$ - \mathbf{d} afforded 3,4-dihydro-8-[(2,3,4,5-tetrahydro-4-meth-
ylidene-5-oxofuran-2-yl)methoxy]quinolin-2(1H)-ones $\mathbf{4 b}$-d, respectively, in 65-68\% yield, indicating that $\mathbf{2 b}-\mathbf{d}$ and the corresponding tricyclic counterparts $\mathbf{3 b}-\mathbf{d}$ are interconvertible. Accordingly, $\mathbf{4 e}$ and $\mathbf{4 f}$ were prepared from $2 \mathbf{e}$ and 3 f, respectively, via Reformatsky-type condensation. The 6- and 7-substituted analogs $9 \mathbf{9}-\mathbf{h}$ and 10a-d were also obtained from the corresponding 3,4-dihydroquinolin-2($1 H$)-ones 5 and 6 [10] via alkylation and Reformatsky-type condensation (Scheme 2).

Scheme 2

The antiplatelet activities of α-methylidene- γ-butyrolactones with 3,4-dihydroqui-nolin-2(1H)-one moieties were evaluated in washed rabbit platelets. Platelet aggregation was induced by thrombin ($\mathrm{Thr}, 0.1 \mathrm{U} / \mathrm{ml}$), arachidonic acid (AA, $100 \mu \mathrm{M}$), collagen (Col, $10 \mu \mathrm{~g} / \mathrm{ml}$), and platelet-activating factor (PAF, 2 nm). The final concentration of compounds was $100 \mu \mathrm{~g} / \mathrm{ml}$, and the results are shown in Table 1.

Table 1. Effect of 3,4-Dihydroquinolin-2(1H)-ones on the Platelet Aggregation ([\%]) Induced by Thrombin (Thr), Arachidonic Acid (AA), Collagen (Col) and Platelet-Activating Factor (PAF) in Washed Rabbit Platelets ${ }^{\text {a }}$)

Compounds	Inducer			
	Thr $(0.1 \mathrm{U} / \mathrm{ml})$	AA $(100 \mu \mathrm{M})$	Col $(10 \mu \mathrm{~g} / \mathrm{ml})$	PAF $(2 \mathrm{nM})$
Control	90.5 ± 0.8	87.1 ± 0.1	90.0 ± 0.7	88.7 ± 0.9
4a	$69.7 \pm 3.5^{\mathrm{b}}$	$\left.0^{\mathrm{b}}\right)$	0	$\left.68.5 \pm 6.3^{\mathrm{b}}\right)$
$\left.\mathbf{4 b}^{\mathrm{c}}\right)$	0	0	0	0
4d	$\left.75.7 \pm 2.2^{\mathrm{b}}\right)$	0	0	$\left.32.6 \pm 6.0^{\mathrm{b}}\right)$
9a	$\left.2.9 \pm 1.2^{\mathrm{b}}\right)$	0	0	0
9d	$\left.53.6 \pm 4.8^{\mathrm{b}}\right)$	0	$\left.5.5 \pm 2.3^{\mathrm{b}}\right)$	0
9e	$\left.6.2 \pm 5.0^{\mathrm{b}}\right)$	0	0	0
10a	$\left.8.9 \pm 7.2^{\mathrm{b}}\right)$	0	0	$\left.7.8 \pm 3.6^{\mathrm{b}}\right)$
Aspirin	91.9 ± 1.4	0	85.4 ± 3.9	90.5 ± 1.2

${ }^{\text {a }}$) Platelets were preincubated with 3,4-dihydroquinolin-2($1 H$)-ones ($100 \mu \mathrm{~g} / \mathrm{ml}$) or DMSO $(0.5 \%$, control $)$ at 37° for 3 min , and the inducer was then added. Percentages of aggregation are presented as means \pm standard errors of the mean $(n=3-7) .{ }^{\text {b }}$) Significantly different from control value at $p<0.001$. ${ }^{\mathrm{c}}$) Platelet aggregation induced by the four inducers was completely inhibited by $\mathbf{4 b}, 4 \mathbf{c}, 4 \mathrm{e}, 4 \mathrm{f}, 9 \mathrm{~b}, 9 \mathrm{c}, 9 \mathrm{~g}, 9 \mathrm{~h}, \mathbf{1 0 b}-\mathbf{d}$.

All of the tested compounds were found to completely inhibit platelet aggregation induced by AA and Col. Compounds $\mathbf{4 b}, 4 \mathbf{c}, 4 \mathbf{4}, \mathbf{4 f}, \mathbf{9 b - c}, 9 \mathrm{~g}, 9 \mathrm{~h}$, and $\mathbf{1 0 b}-\mathbf{d}$ also exhibited good inhibitory activity against Thr- and PAF-induced aggregation. The inhibitory concentrations for 50% aggregation $\left(I C_{50}\right)$ induced by AA and PAF are given in Table 2.

Table 2. IC_{50} Values $([\mu \mathrm{m}])$ of 3,4-Dihydroquinolin-2(1H)-ones on the Platelet Aggregation Induced by AA and PAF
a) 8-Substituted 3,4-dihydroquinolin-2(1H)-ones

	$\mathbf{4 a}$	$\mathbf{4 b}$	$\mathbf{4 c}$	$\mathbf{4 d}$	$\mathbf{4} \mathbf{e}$	$\mathbf{4}$
AA	35.73	4.39	3.75	7.73	8.20	3.40
PAF	>100	21.7	15.6	78.03	35.46	8.63

b) 6-Substituted 3,4-dihydroquinolin-2(1H)-ones

	$\mathbf{9 a}$	$\mathbf{9 b}$	$\mathbf{9 c}$	$\mathbf{9 d}$	$\mathbf{9 e}$	$\mathbf{9 g}$	$\mathbf{9 h}$
AA	1.64	0.57	0.60	3.29	1.01	0.57	0.63
PAF	13.29	2.33	1.83	6.23	7.24	2.30	2.30

c) 7-Substituted 3,4-dihydroquinolin-2(1H)-ones

	$\mathbf{1 0 a}$	$\mathbf{1 0 b}$	$\mathbf{1 0 c}$	$\mathbf{1 0 d}$
AA	2.31	0.23	0.28	1.91
PAF	51.37	6.13	3.54	11.44

Compound $\mathbf{4 a}$, with a Me substituent at $\mathrm{C}\left(2^{\prime}\right)$ of the lactone moiety, was less active against AA- and PAF-induced aggregation than its $\mathrm{PhC}\left(2^{\prime}\right)$-lactone counterparts ($\mathbf{4 b}$ f). Compounds $\mathbf{4 c}$ and $\mathbf{4 f}$, which possess electron-withdrawing substituents (F and NO_{2}, resp.), were found to be more potent than that of onyl-Ph-substituted $\mathbf{4 b}$, while $\mathbf{4 d}$ and $\mathbf{4 e}$, which possess an electron-donating substituent (Ph and MeO , resp.), were even less active. Comparison of the positional isomers showed that 6 - and 7 -substituted derivatives $9 \mathbf{a}-\mathbf{d}$ and 10a-d are more potent than the respective 8 -substituted isomers $\mathbf{4 a}-\mathbf{d}$ in inhibiting both AA- and PAF-induced aggregations.

In summary, the lower inhibitory potency of $\mathbf{4 d}, \mathbf{9 d}$, and $\mathbf{1 0 d}$ implies that an electron-donating aryl substituent at $\mathrm{C}\left(2^{\prime}\right)$ of the lactone moiety reduces the antiplatelet activity of compounds of this type. For AA-induced platelet aggregation, the inhibitory potency decreases in the order 7 -substituted >6-substituted >8-substituted. For PAF-induced platelet aggregation, the inhibitory potency decreases in the order 6 -substituted >7-substituted >8-substituted. All of these α-methylidene- γ butyrolactones bearing 3,4-dihydroquinolin-2(1H)-ones are more potent than their respective unsaturated counterparts [3].

We gratefully acknowledge financial support from the National Science Council of the Republic of China.

Experimental Part

General. TLC: precoated (0.2 mm) silica gel $60 F_{254}$ plates from EM Laboratories, Inc.; detection by UV light (254 nm). M.p.: Electrothermal IA-9000 micromelting-point apparatus; uncorrected. UV Spectra $\left(\lambda_{\max }\right.$ (log ε) in nm): Beckman UV-VIS spectrophotometer. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra: Varian-Gemini-200 spectrometer, δ in ppm with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. Elemental analyses were carried out on a Heraeus CHN-O-Rapid elemental analyzer, and results were within $+/-0.4 \%$ of calc. values.

3,4-Dihydro-8-(2-oxopropoxy)quinolin-2(1H)-one (2a) and 2,3,6,7-Tetrahydro-3-hydroxy-3-methyl-5H-pyrido[1,2,3-de][1,4]benzoxazin-5-one (3a). 3,4-Dihydro-8-hydroxyquinolin- $2(1 \mathrm{H}$)-one ($\mathbf{1}, 1.63 \mathrm{~g}, 10 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 10 \mathrm{mmol})$ and dry DMF $(50 \mathrm{ml})$ were stirred at r.t. for 30 min . To this soln., chloroacetone $(0.92 \mathrm{~g}, 10 \mathrm{mmol})$ in dry DMF $(10 \mathrm{ml})$ was added in one portion. The resulting mixture was stirred at r.t. for 24 h (TLC monitoring) and then poured into ice-water (100 ml). The white solid thus obtained was collected and purified by column chromatography (CC) (silica gel; hexane/AcOEt 1:1), affording a residual solid which was
crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} 1: 10: \mathbf{2 a}$ and 3a (1:2.84; $\left.1.64 \mathrm{~g}, 75 \%\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO): $4.79\left(s, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right.$ of 2a); 3.78, $3.91\left(2 d, J=11.2, A B\right.$ type, $2 \mathrm{H}-\mathrm{C}(2)$ of 3a). ${ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{DMSO}): 73.44\left(\mathrm{C}\left(1^{\prime}\right)\right) ; 169.60(\mathrm{C}(2)) ; 204.71$ $\left(\mathrm{C}\left(2^{\prime}\right)\right.$ of 2a); $73.51(\mathrm{C}(2)) ; 82.12(\mathrm{C}(3)) ; 169.53\left(\mathrm{C}(5)\right.$ of 3a). Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}$: C 65.74, H 5.98, N 6.39; found: C 65.73, H 6.02, N 6.42 .

3,4-Dihydro-8-(2-oxo-2-phenylethoxy)quinolin-2(1H)-one (2b) and 2,3,6,7-Tetrahydro-3-hydroxy-3-phen$y l$ - 5 H -pyrido[1,2,3-de][1,4]benzoxazin-5-one (3b). A mixture of $\mathbf{2 b}$ and $\mathbf{3 b}(1.39: 1)$ was obtained from $\mathbf{1}$ and 2-bromoacetophenone, according to the procedure described above, in 74% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO): 5.60 $\left(s, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right.$ of $\left.\mathbf{2 b}\right) ; 3.80,3.96(2 d, J=11.6, A B$ type, $2 \mathrm{H}-\mathrm{C}(2)$ of $\mathbf{3 b}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{DMSO}): 71.70\left(\mathrm{C}\left(1^{\prime}\right)\right)$; $169.54(\mathrm{C}(2)) ; 194.98\left(\mathrm{C}\left(2^{\prime}\right)\right.$ of $\left.\mathbf{2 b}\right) ; 74.82(\mathrm{C}(2)) ; 84.05(\mathrm{C}(3)) ; 168.74(\mathrm{C}(5)$ of $\mathbf{3 b})$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}$: C 72.58, H 5.38, N 4.98; found: C 72.61, H5.37, N 4.97.

8-[2-(4-Fluorophenyl)-2-oxoethoxy]-3,4-dihydroquinolin-2(1H)-one (2c) and 3-(4-Fluorophenyl)-2,3,6,7-tetrahydro-3-hydroxy-5H-pyrido[1,2,3-de][1,4]benzoxazin-5-one (3c). A mixture of 2c and 3c (1.43:1) was obtained from 1 and 2-bromo-4'-fluoroacetophenone, according to the procedure described above, in 80% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO): $5.58\left(s, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right.$ of $\left.2 \mathbf{c}\right) ; 3.80,3.95(2 d, J=11.4, A B$ type, $2 \mathrm{H}-\mathrm{C}(2)$ of $\mathbf{3 c}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO): $71.62\left(\mathrm{C}\left(1^{\prime}\right)\right) ; 169.56(\mathrm{C}(2)) ; 193.66\left(\mathrm{C}\left(2^{\prime}\right)\right.$ of $\left.\mathbf{2 c}\right) ; 74.75(\mathrm{C}(2)) ; 83.61(\mathrm{C}(3)) ; 168.66(\mathrm{C}(5)$ of 3c). Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{FNO}_{3}$: $\mathrm{C} 68.22, \mathrm{H} 4.71, \mathrm{~N} 4.68$; found: C 68.07 , H 4.72, N 4.66.

8-[2-(1,1'-Biphenyl-4-yl)-2-oxoethoxy]-3,4-dihydroquinolin-2(1H)-one (2d) and 3-(1,1'-Biphenyl-4-yl)-2,3,6,7-tetrahydro-3-hydroxy-5H-pyrido[1,2,3-de][1,4]benzoxazin-5-one (3d). A mixture of 2d and 3d ($1.32: 1$) was obtained from 1 and 2-bromo-4'-phenylacetophenone, according to the procedure described above, in 84% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{DMSO}): 5.64\left(s, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right.$ of $\left.\mathbf{2 d}\right) ; 3.85,4.00(2 d, J=11.2, A B$ type, $2 \mathrm{H}-\mathrm{C}(2)$ of 3d). ${ }^{13} \mathrm{C}$-NMR (DMSO): $71.72\left(\mathrm{C}\left(1^{\prime}\right)\right) ; 169.51(\mathrm{C}(2)) ; 194.53\left(\mathrm{C}\left(2^{\prime}\right)\right.$ of $\left.\mathbf{2 d}\right) ; 74.75(\mathrm{C}(2)) ; 83.89(\mathrm{C}(3)) ; 168.71$ $\left(\mathrm{C}(5)\right.$ of 3d). Anal. calc. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 73.58, \mathrm{H} 5.64$, N 3.73; found: C 73.33, H 5.72, N 3.74.

3,4-Dihydro-8-[2-(4-methoxyphenyl)-2-oxoethoxy]quinolin-2 $(1 \mathrm{H})$-one $(\mathbf{2 e})$. Compound $2 \mathbf{e}$ was obtained from 1 and 2-bromo-4'-methoxyacetophenone, according to the procedure described above, in 77% yield. M.p. $169-170^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO): 2.45-2.52 ($\left.m, 2 \mathrm{H}-\mathrm{C}(3)\right) ; 2.85-2.93(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 3.86(s, \mathrm{MeO}) ; 5.53$ $\left(s, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.84-8.04(m, 7$ arom. H); 8.95 (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO): 24.84 (C(4)); 30.41 (C(3)); $55.61(\mathrm{MeO}) ; 71.50\left(\mathrm{C}\left(1^{\prime}\right)\right) ; 112.06 ; 114.07 ; 120.56 ; 122.06 ; 124.68 ; 127.07 ; 127.49 ; 130.28 ; 144.87(\mathrm{C}(8)) ; 163.65$; $169.51(\mathrm{C}(2)) ; 193.31\left(\mathrm{C}\left(2^{\prime}\right)\right)$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4}$: C 69.44, H 5.51, N4.50; found: C 69.11, H 5.48, N 4.48.

2,3,6,7-Tetrahydro-3-hydroxy-3-(4-nitrophenyl)-5H-pyrido[1,2,3-de][1,4]benzoxazin-5-one (3f). Compound 3f was obtained from 1 and 2-bromo-4'-nitroacetophenone, according to the procedure described above, in 74% yield. M.p. $183-184^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{DMSO}): 2.50-2.56(m, 2 \mathrm{H}-\mathrm{C}(6)) ; 2.56-3.08(m, 2 \mathrm{H}-\mathrm{C}(7))$; 3.80, $3.99(2 d, J=11.4, A B$ type, $2 \mathrm{H}-\mathrm{C}(2)) ; 6.91-8.22\left(m, 7\right.$ arom. H); $7.14(s, \mathrm{OH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO): 24.18 (C(7)); $31.86(\mathrm{C}(6)) ; 74.35(\mathrm{C}(2)) ; 83.04(\mathrm{C}(3)) ; 115.41 ; 121.38 ; 122.95 ; 123.24 ; 125.94 ; 126.30 ; 126.52 ; 144.53$ (C(11)) ; 146.70; 149.44; 168.21 (C(5)). Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$: C 62.58, H 4.32, N 8.58; found: C 62.40, H 4.36, N 8.50 .

3,4-Dihydro-6-(2-oxopropoxy)quinolin- $2(1 \mathrm{H})$-one (7a). Compound 7a was obtained from 5a and chloroacetone, according to the procedure described above, in 78% yield. M.p. $125-126^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO): $2.14(s, \mathrm{Me}) ; 2.36-2.44(m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.79-2.86(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 4.72\left(\mathrm{~s}, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.66-6.79(m, 3 \mathrm{ar}-$ om. H); 9.92 (br. s, NH). ${ }^{13} \mathrm{C}$-NMR (DMSO): 25.10 (C(4)); 26.27 (Me); $30.35(\mathrm{C}(3)) ; 72.50\left(\mathrm{C}\left(1^{\prime}\right)\right) ; 113.03$; 114.10; 115.81; 124.97; 132.14; $153.02(\mathrm{C}(6)) ; 169.96(\mathrm{C}(2)) ; 204.57\left(\mathrm{C}\left(2^{\prime}\right)\right)$. Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}$: C 65.74, H 5.98, N 6.39; found: C 65.61, H 5.98, N 6.41.

3,4-Dihydro-6-(2-oxo-2-phenylethoxy)quinolin-2(1H)-one (7b). Compound 7b was obtained from $\mathbf{5 b}$ and 2-bromoacetophenone, according to the procedure described above, in 85% yield. M.p. $111-112^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO): 2.37-2.44 ($m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.79-2.86(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 5.49\left(s, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.77-8.04$ ($m, 8$ arom. H) ; 9.93 (br. s, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO): 25.14 (C(4)); 30.39 (C(3)); $70.53\left(\mathrm{C}\left(1^{\prime}\right)\right) ; 113.27 ; 114.27 ; 115.83$; $124.93 ; 127.94 ; 128.93 ; 132.14 ; 133.87 ; 134.50 ; 153.25(\mathrm{C}(6)) ; 169.99(\mathrm{C}(2)) ; 194.91\left(\mathrm{C}\left(2^{\prime}\right)\right)$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}: \mathrm{C} 72.58, \mathrm{H} 5.38$, N 4.98 ; found: C 72.44, H 5.42, N 4.98.

6-[2-(4-Fluorophenyl)-2-oxoethoxy]-3,4-dihydroquinolin-2(1H)-one (7c). Compound $7 \mathbf{c}$ was obtained from 5c and 2-bromo-4'-fluoroacetophenone, according to the procedure described above, in 94% yield. M.p. $214-215^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO): 2.35-2.43 ($\left.m, 2 \mathrm{H}-\mathrm{C}(3)\right) ; 2.78-2.85(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 5.46\left(s, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right)$; $6.75-8.12$ ($m, 7$ arom. H); 9.91 (br. $s, N H$). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO): 25.12 (C(4)); 30.37 (C(3)); 70.47 (C(1')); $113.27 ; 114.26 ; 115.75 ; 115.81 ; 116.18 ; 124.93 ; 130.93 ; 131.12 ; 131.24 ; 131.29 ; 132.17 ; 153.19$ (C(6)); 162.87; 167.89; $169.97(\mathrm{C}(2))$; $193.57\left(\mathrm{C}\left(2^{\prime}\right)\right)$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{FNO}_{3}: \mathrm{C} 68.22$, H 4.71, N 4.68 ; found: C 68.02 , H 4.72, N 4.71.

6-[2-(1,1'-Biphenyl-4-yl)-2-oxoethoxy]-3,4-dihydroquinolin-2(1H)-one (7d). Compound 7d was obtained from 5d and 2-bromo-4'-phenylacetophenone, according to the procedure described above, in 87% yield. M.p.

182-183 ${ }^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO): 2.36-2.43 ($\left.m, 2 \mathrm{H}-\mathrm{C}(3)\right) ; 2.78-2.86(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 5.51\left(s, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right)$; $6.77-8.11$ ($m, 12$ arom. H) ; 9.93 (br. s, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{DMSO}): 25.14$ (C(4)); 30.38 (C(3)); 70.56 (C(1')); $113.27 ; 114.26 ; 115.83 ; 124.94 ; 127.07 ; 127.10 ; 128.60 ; 128.71 ; 129.22 ; 132.14 ; 133.29 ; 138.90 ; 145.19 ; 153.25$ (C(6)) ; $169.98(\mathrm{C}(2)) ; 194.45\left(\mathrm{C}\left(2^{\prime}\right)\right)$. Anal. calc. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{3}: \mathrm{C} 77.29, \mathrm{H} 5.36, \mathrm{~N} 3.92$; found: C 77.09, H 5.41, N 3.90 .

3,4-Dihydro-6-[2-(4-methoxyphenyl)-2-oxoethoxy]quinolin-2(1H)-one (7e). Compound 7e was obtained from 5e and 2-bromo-4'-methoxyacetophenone, according to the procedure described above, in 96% yield. M.p. $179-180^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO): 2.38-2.42 ($m, 2 \mathrm{H}-\mathrm{C}(3)$); $2.80-2.84(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 3.86$ (MeO); 5.40 ($\left.s, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.75-8.01$ ($m, 7$ arom. H); 9.91 (br. s, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO): 25.11 (C(4)); 30.34 (C(3)); $55.65(\mathrm{MeO}) ; 70.28$ (C(1')); 113.21; 114.09; 114.23; 115.77; 124.87; 127.41; 130.28; 132.07; 153.29 (C(6)); 163.59; $169.91(\mathrm{C}(2)) ; 193.18\left(\mathrm{C}\left(2^{\prime}\right)\right)$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4}$: C 69.44, H 5.51, N 4.50; found: C 69.16, H 5.56, N 4.43.

6-[2-(4-Chlorophenyl)-2-oxoethoxy]-3,4-dihydroquinolin-2(1H)-one (7g). Compound $\mathbf{7 g}$ was obtained from 5 g and 2-bromo-4'-chloroacetophenone, according to the procedure described above, in 76% yield. M.p. $212-213^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO): $2.37-2.44(m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.79-2.86(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 5.48\left(s, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right)$; $6.77-8.05$ ($m, 7$ arom. H); 9.93 (br. s, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO): 25.12 (C(4)); 30.38 (C(3)); 70.53 (C(1')); 113.27; 114.26; 115.82; 124.94; 129.03; 129.91; 132.19; 133.17; 138.74; 153.15 (C(6)); 169.98 (C(2)); 194.04 $\left(\mathrm{C}\left(2^{\prime}\right)\right)$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClNO}_{3}: \mathrm{C} 64.66, \mathrm{H} 4.47, \mathrm{~N} 4.44$; found: C 64.47, H 4.45, N 4.44.

6-[2-(4-Bromophenyl)-2-oxoethoxy]-3,4-dihydroquinolin-2(1H)-one ($\mathbf{7 h}$). Compound $7 \mathbf{7 h}$ was obtained from $5 \mathbf{h}$ and 2-bromo-4'-bromoacetophenone, according to the procedure described above, in 75% yield. M.p. 198-199 $.^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO): 2.36-2.44 ($\left.m, 2 \mathrm{H}-\mathrm{C}(3)\right) ; 2.79-2.86(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 5.47\left(s, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right)$; $6.76-7.97$ ($m, 7$ arom. H); 9.92 (br. s, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO): $25.13(\mathrm{C}(4)) ; 30.38$ (C(3)); 70.51 (C(1')); 113.28; 114.27; 115.83; 124.96; 127.94; 130.00; 131.99; 132.20; 133.49; 153.15 (C(6)); 169.99 (C(2)); 194.27 $\left(\mathrm{C}\left(2^{\prime}\right)\right)$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrNO}_{3}: \mathrm{C} 56.68, \mathrm{H} 3.92$, N 3.89 ; found: C 56.48, H 3.92, N 3.87 .

3,4-Dihydro-7-(2-oxopropoxy)quinolin- $2(1 \mathrm{H})$-one $(\mathbf{8 a})$. Compound $8 \mathbf{8 a}$ was obtained from $\mathbf{6 a}$ and chloroacetone, according to the procedure described above, in 72% yield. M.p. $136-137^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO): 2.14 (s, Me) ; 2.38-2.45 ($m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.75-2.82(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}(4)) ; 4.71\left(\mathrm{~s}, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.40-7.06(\mathrm{~m}, 3$ arom. H); 9.97 (br. s, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO): 23.97 (C(4)); 26.20 (Me); 30.67 (C(3)); 72.18 (C(1')); 101.92; $107.30 ; 116.15 ; 128.38 ; 139.21 ; 156.95(\mathrm{C}(7)) ; 170.31(\mathrm{C}(2)) ; 204.19\left(\mathrm{C}\left(2^{\prime}\right)\right)$. Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}$: C 65.74, H 5.98, N 6.39; found: C 65.74, H 6.03, N 6.36 .

3,4-Dihydro-7-(2-oxo-2-phenylethoxy)quinolin-2(1H)-one (8b). Compound $\mathbf{8 b}$ was obtained from $\mathbf{6 b}$ and 2-bromoacetophenone, according to the procedure described above, in 84% yield. M.p. $181-182^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO): 2.37-2.45 ($m, 2 \mathrm{H}-\mathrm{C}(3)$); 2.75-2.82 ($m, 2 \mathrm{H}-\mathrm{C}(4))$; $5.50\left(s, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.45-8.04$ ($m, 8$ arom. H) ; 9.96 (br. s, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO): 23.97 (C(4)); $30.67(\mathrm{C}(3)) ; 70.18\left(\mathrm{C}\left(1^{\prime}\right)\right) ; 102.01 ; 107.48 ; 116.04$; 127.81; 128.29; 128.82; 133.77; 134.37; 139.16; 157.14 (C(7)); 170.22 (C(2)); 194.61 ($\mathrm{C}\left(2^{\prime}\right)$). Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3} \cdot 0.125 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 72.01, \mathrm{H} 5.42$, N 4.94 ; found: $\mathrm{C} 72.01, \mathrm{H} 5.42, \mathrm{~N} 4.82$.

7-[2-(4-Fluorophenyl)-2-oxoethoxy]-3,4-dihydroquinolin-2(1H)-one (8c). Compound $8 \mathbf{c}$ was obtained from $\mathbf{6 c}$ and 2-bromo-4'-fluoroacetophenone, according to the procedure described above, in 78% yield. M.p. 190-191 ${ }^{\circ}{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO): $2.38-2.45(m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.75-2.82(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 5.48\left(s, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right)$; $6.45-8.14$ ($m, 7$ arom. H) ; 9.96 (br. s, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO): 24.01 (C(4)); 30.71 (C(3)); 70.16 (C(1')); $102.08 ; 107.52 ; 115.72 ; 116.15 ; 128.35 ; 130.87 ; 131.06 ; 131.14 ; 131.20 ; 139.19 ; 157.14(\mathrm{C}(7)) ; 162.84 ; 167.86$; $170.32(\mathrm{C}(2))$; $193.36\left(\mathrm{C}\left(2^{\prime}\right)\right)$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{FNO}_{3}$: C 68.22, H 4.71, N 4.68; found: C 68.08, H 4.76, N 4.67.

7-[2-(1,1'-Biphenyl-4-yl)-2-oxoethoxy]-3,4-dihydroquinolin-2(1H)-one (8d). Compound $\mathbf{8 d}$ was obtained from $\mathbf{6 d}$ and 2-bromo-4'-phenylacetophenone, according to the procedure described above, in 80% yield. M.p. $187-188^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO): 2.38-2.45 ($\left.m, 2 \mathrm{H}-\mathrm{C}(3)\right) ; 2.75-2.83(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 5.53\left(s, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right)$; $6.47-8.12(m, 12$ arom. H) ; 9.97 (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{DMSO}): 24.01(\mathrm{C}(4)) ; 30.70(\mathrm{C}(3)) ; 70.24\left(\mathrm{C}\left(1^{\prime}\right)\right)$; $102.04 ; 107.56 ; 116.09 ; 127.04 ; 128.35 ; 128.53 ; 128.61 ; 129.14 ; 133.18 ; 138.82 ; 139.19 ; 145.17 ; 157.19$ (C(7)); $170.30(\mathrm{C}(2))$; $194.21\left(\mathrm{C}\left(2^{\prime}\right)\right)$. Anal. calc. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{3} \cdot 0.125 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 76.81$, H 5.39, N 3.90; found: C 76.75, H 5.43, N 3.89 .

3,4-Dihydro-8-[(2,3,4,5-tetrahydro-2-methyl-4-methylidene-5-oxofuran-2-yl)methoxy]quinolin-2(1H)-one (4a). To a soln. of $\mathbf{2 a}$ and $\mathbf{3 a}(0.66 \mathrm{~g}, 3 \mathrm{mmol})$ in dry THF (60 ml), activated Zn powder ($0.26 \mathrm{~g}, 3.9 \mathrm{mmol}$), hydroquinone (6 mg), and ethyl 2-(bromomethyl)acrylate ($0.78 \mathrm{~g}, 4 \mathrm{mmol}$) were added. The mixture was refluxed under N_{2} for 6 h (TLC monitoring). After cooling, it was poured into ice-cold $5 \% \mathrm{HCl}$ soln. (300 ml) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 60 \mathrm{ml})$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a residual solid which was purified by CC on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone $5: 1$. The proper fractions were combined and evaporated, furnishing a residual solid, which was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
to afford $\mathbf{4 a}(0.60 \mathrm{~g}, 70 \%)$. Colorless crystals. M.p. $178-179^{\circ}$. UV ($0.1 \mathrm{NHCl} / \mathrm{MeOH}$): 249 (3.99), 284 (3.63). UV (MeOH): 249 (3.95), 285 (3.58). UV ($0.1 \mathrm{~N} \mathrm{NaOH/MeOH):} 249$ (3.98), 284 (3.63). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 1.58$ $(s, \mathrm{Me}) ; 2.59-2.63(m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.81\left(d t, J=17.2,2.8,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 2.93-2.97(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 3.16(d t, J=$ $\left.16.8,2.4,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.95,4.09\left(2 d, J=9.6, A B\right.$ type, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 5.75\left(t, J=2.4,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.37(t, J=2.4$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.72-6.94(m, 3$ arom. H); 7.55 (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 23.95(\mathrm{Me}) ; 25.36$ (C(4)); $30.53(\mathrm{C}(3)) ; 37.01\left(\mathrm{C}\left(3^{\prime}\right)\right) ; 73.66\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 81.11\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 109.93 ; 120.88 ; 122.48 ; 122.64 ; 124.48 ; 126.62 ; 135.27$; $144.32(\mathrm{C}(8)) ; 169.16\left(\mathrm{C}\left(5^{\prime}\right)\right) ; 170.09(\mathrm{C}(2))$. Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}: \mathrm{C} 66.88$, H 5.92, N 4.88 ; found: C 66.71 , H 6.05, N 4.88 .

The same procedure was used to convert each of the compounds $\mathbf{2 b}-\mathbf{f}$ and $\mathbf{3 b}-\mathbf{f}$ to the follow-up products $\mathbf{4 b}-\mathbf{f} ; \mathbf{7 a -} \mathbf{e}$ and $7 \mathbf{g}$ to $9 \mathbf{a}-\mathbf{e}$ and $9 \mathbf{g}$; and $8 \mathbf{a}-\mathbf{d}$ to $10 \mathbf{a}-\mathbf{d}$, resp.

3,4-Dihydro-8-[(2,3,4,5-tetrahydro-4-methylidene-5-oxo-2-phenylfuran-2-yl)methoxy]quinolin-2(1H)-one (4b). Yield: 65%. M.p. $212-213^{\circ}$. UV ($0.1 \mathrm{~N} \mathrm{HCl} / \mathrm{MeOH}$): 249 (4.00), 284 (3.61). UV (MeOH): 249 (3.97), 285 (3.57). UV ($0.1 \mathrm{~N} \mathrm{NaOH} / \mathrm{MeOH}): 249$ (4.00), 284 (3.63). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.54-2.62(m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.89$ $2.97(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 3.25\left(d t, J=16.8,3.0,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.64\left(d t, J=16.8,2.2,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.13,4.27(2 d, J=$ 10.2, $A B$ type, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 5.82\left(t, J=2.8,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.44\left(t, J=2.8,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.64-7.49$ ($m, 8$ arom. H) ; 7.45 (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 25.35(\mathrm{C}(4)) ; 30.51(\mathrm{C}(3)) ; 37.61\left(\mathrm{C}\left(3^{\prime}\right)\right) ; 75.10\left(\mathrm{CH}_{2} \mathrm{O}\right)$; 84.07 (C(2')); 110.11; 120.96; 122.33; 122.53; 124.50; 124.93; 126.74; 128.73; 128.79; 128.90; 134.89; 139.65; $144.26(\mathrm{C}(8)) ; 168.78\left(\mathrm{C}\left(5^{\prime}\right)\right) ; 169.95(\mathrm{C}(2))$. Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{4}: \mathrm{C} 72.19, \mathrm{H} 5.48, \mathrm{~N} 4.01$; found: C 72.07 , H 5.62, N 4.02.

8-\{[2-(4-Fluorophenyl)-2,3,4,5-tetrahydro-4-methylidene-5-oxofuran-2-yl]methoxy\}-3,4-dihydroquinolin-2(1H)-one (4c). Yield: 66\%. M.p. $168-169^{\circ}$. UV ($0.1 \mathrm{~N} \mathrm{HCl} / \mathrm{MeOH}$). 249 (4.00), 284 (3.61). UV (MeOH): 249 (4.00), 285 (3.59). UV ($0.1 \mathrm{~N} \mathrm{NaOH} / \mathrm{MeOH}$). 249 (4.02), 285 (3.64). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.57-2.62$ $(m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.91-2.96(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 3.22\left(d t, J=16.8,3.2,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.62(d t, J=16.8,2.4$, $\left.1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right)$; 4.10, $4.24\left(2 d, J=10.4, A B\right.$ type, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 5.83\left(t, J=2.8,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.45(t, J=2.8,1 \mathrm{H}$, $\left.\mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.66-7.49(m, 7$ arom. H); 7.45 (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 25.37(\mathrm{C}(4)) ; 30.51(\mathrm{C}(3)) ; 37.66$ $\left(\mathrm{C}\left(3^{\prime}\right)\right) ; 75.04\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 83.65\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 110.13 ; 115.83 ; 116.04 ; 121.09 ; 122.57 ; 122.63 ; 124.58 ; 126.76 ; 126.87$; 126.96; 134.65; 135.53; 135.57; 144.18 (C(8)); 161.49; 163.96; $168.57\left(\mathrm{C}\left(5^{\prime}\right)\right) ; 169.97(\mathrm{C}(2))$. Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FNO}_{4}$: C 68.65, H 4.94, N 3.81; found: C 68.58, H5.01, N 3.83.

8-\{[2-(1,1'-Biphenyl-4-yl)-2,3,4,5-tetrahydro-4-methylidene-5-oxofuran-2-yl]methoxy\}-3,4-dihydroquinolin-2(1H)-one (4d). Yield: 68%. M.p. $162-163^{\circ}$. UV ($0.1 \mathrm{~N} \mathrm{HCl} / \mathrm{MeOH}$). 251 (4.66). UV (MeOH): 250 (4.61). UV ($0.1 \mathrm{~N} \mathrm{NaOH} / \mathrm{MeOH}): 250(4.64) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.57-2.62(m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.91-2.96(m, 2 \mathrm{H}-\mathrm{C}(4))$; $3.29\left(d t, J=17.2,2.8,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.66\left(d t, J=16.8,2.4,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.16,4.31\left(2 d, J=10.0, A B\right.$ type, $\left.\mathrm{CH}_{2} \mathrm{O}\right)$; $5.84\left(t, J=2.8,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.46\left(t, J=2.4,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.68-7.69(m, 12$ arom. H); 7.49 (br. $s, \mathrm{NH})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 25.37(\mathrm{C}(4)) ; 30.53(\mathrm{C}(3)) ; 37.62\left(\mathrm{C}\left(3^{\prime}\right)\right) ; 75.07\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 84.03\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 110.18 ; 121.01$; $122.46 ; 122.56 ; 124.54 ; 125.45 ; 126.79 ; 127.10 ; 127.59 ; 127.72 ; 128.88 ; 134.85 ; 138.55 ; 140.08 ; 141.76 ; 144.29$ $(\mathrm{C}(8)) ; 168.77\left(\mathrm{C}\left(5^{\prime}\right)\right) ; 169.97(\mathrm{C}(2))$. Anal. calc. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}_{4}$: C 76.22, H 5.45, N 3.29; found: C 75.84, H 5.60, N 3.30 .

3,4-Dihydro-8-\{[2,3,4,5-tetrahydro-2-(4-methoxyphenyl)-4-methylidene-5-oxofuran-2-yl]methoxy\}quinolin-2(1H)-one (4e). Yield: 70\%. M.p. $148-149^{\circ}$. UV ($0.1 \mathrm{~N} \mathrm{HCl} / \mathrm{MeOH}$): 249 (4.08), 280 (3.77). UV (MeOH): 249 (4.09), 280 (3.76): UV ($0.1 \mathrm{~N} \mathrm{NaOH} / \mathrm{MeOH}$): 249 (4.09), 280 (3.78). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.54-2.63$ $(m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.90-2.98(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 3.23 \quad\left(d t, J=16.9,3.1, \quad 1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.59 \quad(d t, J=16.8,2.2$, $\left.1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.83(s, \mathrm{MeO}) ; 4.08,4.24\left(2 d, A B\right.$ type, $\left.J=10.2, \mathrm{CH}_{2} \mathrm{O}\right) ; 5.81\left(t, J=2.7,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.43$ $\left(t, J=2.5,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.64-7.44(m, 7$ arom. H); 7.36 (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 25.36(\mathrm{C}(4)) ; 30.53$ $(\mathrm{C}(3)) ; 37.61\left(\mathrm{C}\left(3^{\prime}\right)\right) ; 55.36(\mathrm{MeO}) ; 75.13\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 83.96\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 110.12 ; 112.28 ; 114.25 ; 120.93 ; 122.24 ; 122.53$; $124.48 ; 126.30 ; 126.75 ; 131.60 ; 135.07 ; 144.29(\mathrm{C}(8)) ; 159.80 ; 168.87\left(\mathrm{C}\left(5^{\prime}\right)\right) ; 169.95(\mathrm{C}(2))$. Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{5}$: C 69.64, H 5.58, N 3.69; found: C 69.49, H 5.68, N 3.69.

3,4-Dihydro-8-\{[2,3,4,5-tetrahydro-4-methylidene-2-(4-nitrophenyl)-5-oxofuran-2-yl]methoxy\}quinolin-2(1H)-one (4f). Yield: 66\%. M.p. $192-193^{\circ}$. UV ($0.1 \mathrm{~N} \mathrm{HCl} / \mathrm{MeOH}$): 252 (4.14). UV (MeOH): 252 (4.14). UV ($0.1 \mathrm{~N} \mathrm{NaOH} / \mathrm{MeOH}): 252(4.14) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.55-2.63(m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.91-2.98(m, 2 \mathrm{H}-\mathrm{C}(4))$; $3.23\left(d t, J=16.8,3.0,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.70\left(d t, J=16.9,2.2,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.18,4.29\left(2 d, J=10.2, A B\right.$ type, $\left.\mathrm{CH}_{2} \mathrm{O}\right)$; $5.88\left(t, J=2.8,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.48\left(t, J=2.8,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.65-8.34(m, 7$ arom. H); 7.44 (br. $s, \mathrm{NH})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 25.34(\mathrm{C}(4)) ; 30.46(\mathrm{C}(3)) ; 37.52\left(\mathrm{C}\left(3^{\prime}\right)\right) ; 74.60\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 83.37\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 110.20 ; 121.38$; 122.63; 123.46; 124.16; 124.72; 126.23; 126.76; 133.71; 143.97 (C(8)); 146.54; 148.06; 168.05 (C(5')); 169.98 $(\mathrm{C}(2))$. Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$: C 63.96, H 4.60, N 7.10; found: C 63.78, H 4.67, N 7.07.

3,4-Dihydro-6-[(2,3,4,5-tetrahydro-2-methyl-4-methylidene-5-oxofuran-2-yl)methoxy]quinolin-2(1H)-one (9a). Yield: 81%. M.p. $135-136^{\circ}$. UV ($0.1 \mathrm{~N} \mathrm{HCl} / \mathrm{MeOH}$): 255 (4.18). UV (MeOH): 255 (4.20). UV (0.1N
$\mathrm{NaOH} / \mathrm{MeOH}): 255(4.21) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 1.54(s, \mathrm{Me}) ; 2.56-2.64(m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.73(d t, J=16.1,2.8$, $\left.1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 2.88-2.96(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 3.17\left(d t, J=17.0,2.6,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.88,3.96(2 d, J=9.7, A B$ type, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 5.66\left(t, J=2.4,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.27\left(t, J=2.9,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.69-6.71(m, 3$ arom. H); 8.32 (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 24.07(\mathrm{Me}) ; 25.55(\mathrm{C}(4)) ; 30.49(\mathrm{C}(3)) ; 36.61\left(\mathrm{C}\left(3^{\prime}\right)\right) ; 73.42\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 81.41$ $\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 113.23 ; 114.75 ; 116.24 ; 121.95 ; 125.05 ; 131.54 ; 135.35 ; 154.20(\mathrm{C}(6)) ; 169.58\left(\mathrm{C}\left(5^{\prime}\right)\right) ; 171.64$ (C(2)). Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}$; C 66.88, H 5.92, N 4.88; found: C 66.87, H 5.97, N 4.87.

3,4-Dihydro-6-[(2,3,4,5-tetrahydro-4-methylidene-5-oxo-2-phenylfuran-2-yl)methoxy]quinolin-2(1H)-one (9b). Yield: 90%. M.p. $113-114^{\circ}$. UV ($0.1 \mathrm{~N} \mathrm{HCl} / \mathrm{MeOH}$): 255 (4.21). UV (MeOH): 256 (4.22). UV (0.1N $\mathrm{NaOH} / \mathrm{MeOH}): 255(4.22) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.54-2.62(m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.85-2.93(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 3.19$ $\left(d t, J=17.0,2.9,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.65\left(d t, J=16.8,2.6,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.06,4.13\left(2 d, J=10.2, A B\right.$ type, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 5.68$ $\left(t, J=2.5,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.29\left(t, J=2.8,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.60-7.47$ ($m, 8$ arom. H); 8.91 (br. s, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 25.52(\mathrm{C}(4)) ; 30.46(\mathrm{C}(3)) ; 37.25\left(\mathrm{C}\left(3^{\prime}\right)\right) ; 74.87\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 84.22\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 113.35 ; 114.89$; 116.17; 121.53; 125.01; 128.47; 128.72; 131.57; 134.91; 140.28; 154.12 (C(6)); 169.29 (C(5')); 171.56 (C(2)). Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{4}$: C 72.19, H 5.48, N 4.01; found: C 72.01, H 5.58, N 3.97 .

6-\{[2-(4-Fluorophenyl)-2,3,4,5-tetrahydro-4-methylidene-5-oxofuran-2-yl]methoxy\}-3,4-dihydroquinolin-2(1H)-one (9c). Yield: 81%. M.p. $130-131^{\circ}$. UV ($0.1 \mathrm{~N} \mathrm{HCl} / \mathrm{MeOH}$): 255 (4.27). UV (MeOH): 255 (4.25). UV ($0.1 \mathrm{~N} \mathrm{NaOH} / \mathrm{MeOH}): 255(4.27) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.55-2.62(m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.86-2.93(m, 2 \mathrm{H}-\mathrm{C}(4))$; $3.15\left(d t, J=16.8,2.9,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.63\left(d t, J=16.9,2.4,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.03,4.10\left(2 d, J=10.2, A B\right.$ type, $\left.\mathrm{CH}_{2} \mathrm{O}\right)$; $5.69\left(t, J=2.4,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.30\left(t, J=2.7,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.60-7.49(m, 7$ arom. H); 8.72 (br. $s, \mathrm{NH})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 25.56(\mathrm{C}(4)) ; 30.48(\mathrm{C}(3)) ; 37.35\left(\mathrm{C}\left(3^{\prime}\right)\right) ; 74.82\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 83.81\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 113.38 ; 114.93$; $115.50 ; 115.93 ; 116.19 ; 121.93 ; 125.14 ; 126.91 ; 127.08 ; 131.67 ; 134.66 ; 136.15 ; 136.21 ; 154.04$ (C(6)); 160.14; 165.07; $169.10\left(\mathrm{C}\left(5^{\prime}\right)\right)$; $171.49(\mathrm{C}(2))$. Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FNO}_{4}$: C 68.65, H4.94, N 3.81; found: C 68.39, H 5.04, N 3.78 .

6-\{[(2-(1,1'-Biphenyl-4-yl)-2,3,4,5-tetrahydro-4-methylidene-5-oxofuran-2-yl]methoxy\}-3,4-dihydroquinolin-2(1H)-one (9d). Yield: 90\%. M.p. $206-207^{\circ}$. UV ($0.1 \mathrm{~N} \mathrm{HCl} / \mathrm{MeOH}$): 254 (4.35). UV (MeOH): 254 (4.36). UV ($0.1 \mathrm{~N} \mathrm{NaOH} / \mathrm{MeOH}): 254(4.36) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.54-2.62(m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.86-2.93(m, 2 \mathrm{H}-\mathrm{C}(4))$; $3.22\left(d t, J=16.9,2.9,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.67\left(d t, J=16.8,2.4,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.10,4.17\left(2 d, J=10.2, A B\right.$ type, $\left.\mathrm{CH}_{2} \mathrm{O}\right)$; $5.69\left(t, J=2.4,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.31\left(t, J=2.7,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.63-7.67(\mathrm{~m}, 12$ arom. H); 8.71 (br. $s, \mathrm{NH})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 25.56(\mathrm{C}(4)) ; 30.49(\mathrm{C}(3)) ; 37.27\left(\mathrm{C}\left(3^{\prime}\right)\right) ; 74.84\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 84.17\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 113.42 ; 114.94$; $116.17 ; 121.68 ; 125.11 ; 125.54 ; 127.07 ; 127.43 ; 127.68 ; 128.87 ; 131.61 ; 134.88 ; 139.21 ; 140.16 ; 141.49 ; 154.15(\mathrm{C}(6))$; $169.28\left(\mathrm{C}\left(5^{\prime}\right)\right) ; 171.46(\mathrm{C}(2))$. Anal. calc. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}_{4}: \mathrm{C} 76.22$, H 5.45, N 3.29 ; found: C 75.98, H 5.49, N 3.29 .

3,4-Dihydro-6-\{[2,3,4,5-tetrahydro-2-(4-methoxyphenyl)-4-methylidene-5-oxofuran-2-yl]methoxy\}quinolin-2(1H)-one (9e). Yield: 74%. M.p. $128-129^{\circ}$. UV ($0.1 \mathrm{~N} \mathrm{HCl} / \mathrm{MeOH}$): 255 (4.22). UV (MeOH): 256 (4.23). UV ($0.1 \mathrm{~N} \mathrm{NaOH} / \mathrm{MeOH}): 255(4.22) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.54-2.62(m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.86-2.93(m, 2 \mathrm{H}-\mathrm{C}(4))$; $3.16\left(d t, J=16.9,2.9,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.61\left(d t, J=16.9,2.4,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.82(s, \mathrm{MeO}) ; 4.02,4.10(2 d, J=10.2, A B$ type, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 5.67\left(t, J=2.4,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.28\left(t, J=2.7,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.61-7.41(\mathrm{~m}, 7$ arom. H$) ; 8.60$ (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 25.54(\mathrm{C}(4)) ; 30.48(\mathrm{C}(3)) ; 37.22\left(\mathrm{C}\left(3^{\prime}\right)\right) ; 55.32(\mathrm{MeO}) ; 74.90\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 84.11$ $\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 113.36 ; 114.06 ; 114.91 ; 116.09 ; 121.43 ; 125.07 ; 126.35 ; 131.51 ; 132.26 ; 135.09 ; 154.15$ (C(6)); 159.61; $169.36\left(\mathrm{C}\left(5^{\prime}\right)\right) ; 171.36(\mathrm{C}(2))$. Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{5}: \mathrm{C} 69.64$, H 5.58, N 3.69; found: C 69.35, H 5.66, N3.65.

6-\{[2-(4-Chlorophenyl)-2,3,4,5-tetrahydro-4-methylidene-5-oxofuran-2-yl]methoxy\}-3,4-dihydroquinolin-2(1H)-one (9g). Yield: 85%. M.p. $169-170^{\circ}$. UV ($0.1 \mathrm{~N} \mathrm{HCl} / \mathrm{MeOH}$): 256 (4.28). UV (MeOH): 255 (4.31). UV ($0.1 \mathrm{~N} \mathrm{NaOH} / \mathrm{MeOH}$): $255(4.29) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.54-2.62(m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.86-2.93(m, 2 \mathrm{H}-\mathrm{C}(4))$; $3.14\left(d t, J=16.9,2.9,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.63\left(d t, J=16.8,2.4,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.03,4.10\left(2 d, J=10.1, A B\right.$ type, $\left.\mathrm{CH}_{2} \mathrm{O}\right)$; $5.70\left(t, J=2.5,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.30\left(t, J=2.9,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.60-7.41(m, 7$ arom. H); 8.65 (br. $s, \mathrm{NH})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 25.56(\mathrm{C}(4)) ; 30.48(\mathrm{C}(3)) ; 37.26\left(\mathrm{C}\left(3^{\prime}\right)\right) ; 74.65\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 83.71\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 113.37 ; 114.93$; 116.16; 122.07; 122.15; 126.55; 128.94; 131.70; 134.46; 134.55; 138.85; 153.99 (C(6)); 168.99 (C(5')); 171.42 (C(2)). Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClNO}_{4}$: C 65.71, H 4.72, N 3.65; found: C 65.46, H 4.77, N 3.63.

6-\{[2-(4-Bromophenyl)-2,3,4,5-tetrahydro-4-methylidene-5-oxofuran-2-yl]methoxy\}-3,4-dihydroquinolin-2(1H)-one (9h). Yield: 91\%. M.p. $167-168^{\circ}$. UV ($0.1 \mathrm{~N} \mathrm{HCl} / \mathrm{MeOH}$): 255 (4.15). UV (MeOH): 255 (4.15). UV $(0.1 \mathrm{~N} \mathrm{NaOH} / \mathrm{MeOH}): 255(4.15) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.57-2.60(m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.87-2.91(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 3.14$ $\left(d t, J=16.8,2.8,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.62\left(d t, J=16.8,2.4,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.04,4.09\left(2 d, J=10.0, A B\right.$ type, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 5.70$ $\left(t, J=2.4,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.30\left(t, J=2.8,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.61-7.57$ ($m, 7$ arom. H); 8.84 (br. s, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 25.53(\mathrm{C}(4)) ; 30.46(\mathrm{C}(3)) ; 37.20\left(\mathrm{C}\left(3^{\prime}\right)\right) ; 74.57\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 83.72\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 113.36 ; 114.90$; 116.19; 122.08; 122.66; 125.12; 126.84; 131.71; 131.88; 134.41; 139.37; 153.97 (C(6)); 168.95 (C(5')); 171.49 $(\mathrm{C}(2))$. Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BrNO}_{4}$: C 58.89, H 4.24, N 3.27; found: C 58.70, H 4.21, N 3.25.

3,4-Dihydro-7-[(2,3,4,5-tetrahydro-2-methyl-4-methylidene-5-oxofuran-2-yl)methoxy]quinolin-2(1H)-one (10a). Yield: 77%. M.p. $138-139^{\circ}$. UV ($0.1 \mathrm{~N} \mathrm{HCl} / \mathrm{MeOH}$): 251 (4.09). UV (MeOH): 251 (4.06). UV (0.1 N $\mathrm{NaOH} / \mathrm{MeOH}): 251(4.09) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 1.54(s, \mathrm{Me}) ; 2.58-2.65(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.73(d t, J=17.2,2.9$, $\left.1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 2.86-2.93(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 3.16\left(d t, J=17.1,2.6,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.89,3.97(2 d, J=9.6, A B$ type, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 5.66\left(t, J=2.5,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.27\left(t, J=2.7,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.36-7.06(m, 3$ arom. H); 8.88 (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 24.12(\mathrm{Me}) ; 24.53(\mathrm{C}(4)) ; 30.93(\mathrm{C}(3)) ; 36.62\left(\mathrm{C}\left(3^{\prime}\right)\right) ; 73.00\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 81.37$ $\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 102.46 ; 108.69 ; 116.64 ; 122.13 ; 128.67 ; 135.23 ; 138.29 ; 157.84(\mathrm{C}(7)) ; 169.54\left(\mathrm{C}\left(5^{\prime}\right)\right) ; 172.11(\mathrm{C}(2))$. Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}$: C 66.88, H 5.92, N 4.88; found: C 66.81, H 6.01, N4.91.

3,4-Dihydro-7-[(2,3,4,5-tetrahydro-4-methylidene-5-oxo-2-phenylfuran-2-yl)methoxy]quinolin-2(1H)-one (10b). Yield: 84%. M.p. $70-71^{\circ}$. UV ($0.1 \mathrm{~N} \mathrm{HCl} / \mathrm{MeOH}$): 251 (4.01). UV (MeOH): 251 (3.96); UV (0.1N NaOH/ $\mathrm{MeOH}): 251(4.05) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.55-2.63(m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.84-2.91(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 3.18(d t, J=17.0$, $\left.2.9,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.64\left(d t, J=16.9,2.4,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.07,4.15\left(2 d, J=10.2, A B\right.$ type, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 5.67(t, J=2.5,1 \mathrm{H}$, $\left.\mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.29\left(t, J=2.4,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.43-7.50(m, 8$ arom. H); 8.39 (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $24.53(\mathrm{C}(4)) ; 30.91(\mathrm{C}(3)) ; 37.26\left(\mathrm{C}\left(3^{\prime}\right)\right) ; 74.46\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 84.16\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 102.53 ; 108.84 ; 116.80 ; 121.69 ; 125.04$; $128.50 ; 128.70 ; 128.74 ; 134.81 ; 138.20 ; 140.25 ; 157.76(\mathrm{C}(7)) ; 169.25\left(\mathrm{C}\left(5^{\prime}\right)\right) ; 171.77(\mathrm{C}(2))$. Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{4}$: C 72.19, H 5.48, N 4.01; found: C 72.05, H 5.49, N 4.00.

7-\{[2-(4-Fluorophenyl)-2,3,4,5-tetrahydro-4-methylidene-5-oxofuran-2-yl]methoxy\}-3,4-dihydroquinolin-2(1H)-one (10c). Yield: 80%. M.p. $117-118^{\circ}$. UV ($0.1 \mathrm{~N} \mathrm{HCl} / \mathrm{MeOH}$): 251 (3.96). UV (MeOH): 252 (3.92). UV $(0.1 \mathrm{~N} \mathrm{NaOH} / \mathrm{MeOH}): 252(3.98) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.57-2.61(m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.85-2.89(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 3.15$ $\left(d t, J=17.2,2.8,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.62\left(d t, J=16.8,2.8,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.05,4.11\left(2 d, J=10.4, A B\right.$ type, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 5.69$ $\left(t, J=2.4,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.30\left(t, J=2.8,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.32-7.47$ ($m, 7$ arom. H); 8.77 (br. s, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 24.50(\mathrm{C}(4)) ; 30.86(\mathrm{C}(3)) ; 37.31\left(\mathrm{C}\left(3^{\prime}\right)\right) ; 74.34\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 83.75\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 102.56 ; 108.88$; $115.57 ; 115.78 ; 116.18 ; 116.87 ; 122.06 ; 126.96 ; 127.04 ; 128.69 ; 134.52 ; 136.11 ; 136.14 ; 138.25 ; 157.65$ (C(7)); 161.35; 163.81; $169.06\left(\mathrm{C}\left(5^{\prime}\right)\right) ; 172.02(\mathrm{C}(2))$. Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FNO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 65.45, \mathrm{H} 5.23$, N 3.64 ; found: C 65.75, H 5.26, N 3.65.

7-\{[2-(1,1'-Biphenyl-4-yl)-2,3,4,5-tetrahydro-4-methylidene-5-oxofuran-2-yl]methoxy\}-3,4-dihydroquinolin-2(1H)-one (10d). Yield: 83\%. M.p. $101-102^{\circ}$. UV ($0.1 \mathrm{~N} \mathrm{HCl} / \mathrm{MeOH}$): 251 (4.47). UV (MeOH): 251 (4.49). UV $(0.1 \mathrm{~N} \mathrm{NaOH} / \mathrm{MeOH}): 252(4.40) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.55-2.58(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.84-2.88(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}(4)) ; 3.22$ $\left(d t, J=16.8,2.9,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.66\left(d t, J=16.8,2.5,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.11,4.19\left(2 d, J=10.2, A B\right.$ type, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 5.69$ $\left(t, J=2.6,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.31\left(t, J=2.4,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\left(4^{\prime}\right)\right) ; 6.32-7.67$ ($\mathrm{m}, 12$ arom. H); 8.46 (br. s, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 24.56(\mathrm{C}(4)) ; 30.92(\mathrm{C}(3)) ; 37.27\left(\mathrm{C}\left(3^{\prime}\right)\right) ; 74.39\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 84.12\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 102.56 ; 108.86$; $116.83 ; 121.85 ; 125.56 ; 127.09 ; 127.43 ; 127.67 ; 128.72 ; 128.87 ; 134.77 ; 138.24 ; 139.17 ; 140.17 ; 141.50 ; 157.77$ $(\mathrm{C}(7)) ; 169.25\left(\mathrm{C}\left(5^{\prime}\right)\right) ; 171.81(\mathrm{C}(2))$. Anal. calc. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}_{4}$: C76.22, H 5.45, N 3.29; found: C 76.25, H 5.47, N 3.28 .

Antiplatelet-Activity Evaluation. Reagents: Collagen (type I, bovine Achilles tendon), obtained from Sigma Chem. Co., was homogenized in 25 mm AcOH and stored ($1 \mathrm{mg} / \mathrm{ml}$) at -70°. Platelet-activating factor (PAF) was purchased from Calbiochem-Behring Co. and dissolved in CHCl_{3}. Arachidonic acid (AA), EDTA, and bovine serum albumin were purchased from Sigma Chem. Co.

Platelet Aggregation. Blood was collected from the rabbit marginal ear vein, anticoagulated with EDTA (6 mm) and centrifuged for 10 min at $90 \times g$ at r.t. A platelet suspension was prepared from this EDTAanticoagulated, platelet-rich plasma according to the washing procedures described in [11]. Platelet numbers were counted with a Coulter counter (model $Z M$) and adjusted to 4.5×10^{8} platelets $/ \mathrm{ml}$. The platelet pellets were finally suspended in Tyrode's soln. of the following composition (mm): $\mathrm{NaCl}(136.8), \mathrm{KCl}(2.8), \mathrm{NaHCO}_{3}$ (11.9), MgCl_{2} (2.1), $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ (0.33), CaCl_{2} (1.0), and glucose (11.2), containing bovine serum albumin (0.35%). The platelet suspension was stirred at 1200 rpm , and the aggregation was measured at 37° by the turbidimetric method as described by O'Brien [12] with a Chrono-Log Lumi-aggregometer. To eliminate the effect of the solvent on the aggregation, the final concentration of DMSO was fixed at 0.5%. Percentage of aggregation was calculated from the absorbance of platelet suspension as 0% aggregation and the absorbance of Tyrode's solution as 100% aggregation. The inhibitory concentration for 50% aggregation $\left(I C_{50}\right)$ was calculated with CA Cricket Graph III for five or six dose-effect levels.

REFERENCES

[1] Y. L. Chen, T. C. Wang, K. H. Lee, Y. L. Chang, C. M. Teng, C. C. Tzeng, Helv. Chim. Acta 1996, 79, 651; Y. L. Chen, T. C. Wang, S. C. Liang, C. M. Teng, C. C. Tzeng, Chem. Pharm. Bull. 1996, 44, 1591; T. C.

Wang, Y. L. Chen, S. S. Liou, Y. L. Chang, C. M. Teng, C. C. Tzeng, Helv. Chim. Acta 1996, 79, 1620; S. S. Liou, Y. L. Zhao, Y. L. Chang, C. M. Teng, C. C. Tzeng, Chem. Pharm. Bull. 1997, 45, 1777; C. C. Tzeng, Y. L. Zhao, Y. L. Chen, S. S. Liou, T. C. Wang, Y. L. Chang, C. M. Teng, Helv. Chim. Acta 1997, 80, 2337.
[2] Y. L. Chen, T. C. Wang, N. C. Chang, Y. L. Chang, C. M. Teng, C. C. Tzeng, Chem. Pharm. Bull. 1998, 46, 962.
[3] C. C. Tzeng, T. C. Wang, Y. L. Chen, C. J. Wang, Y. L. Chang, C. M. Teng, Helv. Chim. Acta 1997, 80, 1161; T. C. Wang, Y. L. Chen, C. C. Tzeng, S. S. Liuo, W. F. Tzeng, Y. L. Chang, C. M. Teng, Helv. Chim. Acta 1998, 81, 1038; Y. L. Chen, T. C. Wang, K. C. Fang, N. C. Chang, C. C. Tzeng, Heterocycles 1999, 50, 453.
[4] C. H. Liao, C. C. Tzeng, C. M. Teng, Eur. J. Pharmacol. 1998, 349, 107.
[5] T. Nishi, K. Yamamoto, T. Shimizu, T. Kanbe, Y. Kimura, K. Nakagawa, Chem. Pharm. Bull. 1983, 31, 798.
[6] M. Tomigawa, H. Ogawa, E. Yo, S. Yamashita, Y. Yabuuchi, K. Nakagawa, Chem. Pharm. Bull. 1987, 35, 3699.
[7] T. Fujioka, S. Teramoto, T. Mori, T. Hosokawa, T. Sumida, M. Tominaga, Y. Yabuuchi, J. Med. Chem. 1992, 35, 3607.
[8] T. Uno, Y. Ozeki, Y. Koga, G. N. Chu, M. Okada, K. Tamura, T. Igawa, F. Unemi, M. Kido, T. Nishi, Chem. Pharm. Bull. 1995, 43, 1724.
[9] P. Desos, J. M. Lepagnol, P. Morain, P. Lestage, A. Cordi, J. Med Chem. 1996, 39, 197.
[10] F. Mayer, L. van Zutphen, H. Philipps, Ber. Dtsch. Chem. Ges. 1927, 60, 858.
[11] C. M. Teng, F. N. Ko, Thromb. Haemostasis 1988, 59, 304.
[12] J. R. O'Brien, J. Clin. Pathol. 1962, 15, 452.

