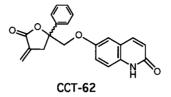
Synthesis and Antiplatelet-Activity Evaluation of α -Methylidene- γ -butyrolactones Bearing 3,4-Dihydroquinolin-2(1*H*)-one Moieties

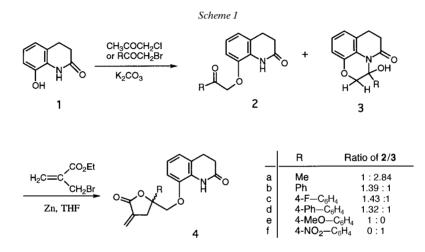
by Cherng-Chyi Tzeng*, I.-Li Chen, and Yeh-Long Chen

School of Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, Republic of China

and Tai-Chi Wang

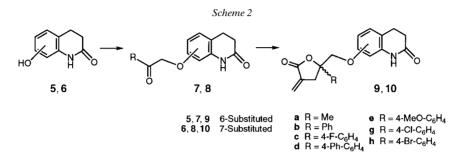

Department of Pharmacy, Tajen Institute of Technology, Pingtung, Taiwan, Republic of China

and Ya-Ling Chang and Che-Ming Teng


Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China

In continuation of our search for potent antiplatelet agents, we have synthesized and evaluated several α -methylidene- γ -butyrolactones bearing 3,4-dihydroquinolin-2(1*H*)-one moieties. *O*-Alkylation of 3,4-dihydro-8-hydroxyquinolin-2(1*H*)-one (**1**) with chloroacetone under basic conditions afforded 3,4-dihydro-8-(2-oxopropoxy)quinolin-2(1*H*)-one (**2a**) and tricyclic 2,3,6,7-tetrahydro-3-hydroxy-3-methyl-5*H*-pyrido[1,2,3-*de*][1,4]-benzoxazin-5-one (**3a**) in a ratio of 1:2.84. Their *Reformatsky*-type condensation with ethyl 2-(bromomethyl)-prop-2-enoate furnished 3,4-dihydro-8-[(2,3,4,5-tetrahydro-2-methyl-4-methylidene-5-oxofuran-2-yl)methoxy]-quinolin-2(1*H*)-one (**4a**), which shows antiplatelet activity, in 70% yield. Its 2'-Ph derivatives, and 6- and 7-substituted analogs were also obtained from the corresponding 3,4-dihydro-7-[(2,3,4,5-tetrahydro-4-methyl-idene-5-oxo-2-phenylfuran-2-yl)methoxy]quinolin-2(1*H*)-one (**10**) was the most active against arachidonic acid (AA) induced platelet aggregation with an IC_{50} of 0.23 μ M. For the inhibition of platelet-activating factor (PAF) induced aggregation, 6-{[2-(4-fluorophenyl)-2,3,4,5-tetrahydro-4-methylidene-5-oxofuran-2-yl]methoxy]-3,4-dihydroquinolin-2(1*H*)-one (**9c**) was the most potent with an IC_{50} value of 1.83 μ M.

Introduction. – Recently, we have synthesized and evaluated the cardiovascular activities of certain α -methylidene- γ -butyrolactones bearing heterocycles such as coumarins, flavones, xanthones, quinolines, and quinolin-2(1H)-ones [1-3]. Among these heterocycles, coumarins exhibited the most potent inhibitory activities on the high- K^+ -medium, Ca²⁺-induced vasoconstriction, and the norepinephrine-induced phasic and tonic vasoconstrictions, while quinolin-2(1H)-ones proved to be the most active against platelet aggregation [2][3]. One of the most potent antiplatelet agents, 6-[(2,3,4,5-tetrahydro-4-methylidene-5-oxo-2-phenylfuran-2-yl)methoxy]quinolin-2(1H)one (CCT-62), has been proved to be an inhibitor of phosphodiesterases, and its antiplatelet effect is mainly mediated by elevation of cyclic-AMP levels [4]. In the continuation of our search for more potent antiplatelet agents, we report herein the preparation, antiplatelet-activity evaluation, and structure-activity relationships of several α -methylidene- γ -butyrolactones bearing 3,4-dihydroquinolin-2(1H)-one moieties, saturated analogs of CCT-62. The cardiovascular and neuroprotective activities of certain quinolin-2(1H)-ones and 3,4-dihydroquinolin-2(1H)-ones substituted with various side chains have been reported earlier [5-9].



Results and Discussion. – The preparation of 3,4-dihydro-8-[(2,3,4,5-tetrahydro-2-methyl-4-methylidene-5-oxofuran-2-yl)methoxy]quinolin-2(1*H*)-one (**4a**) and its 2'-Ph derivatives is illustrated in *Scheme 1.* 3,4-Dihydro-8-hydroxyquinolin-2(1*H*)-one (**1**)

was treated with chloroacetone under basic conditions to afford 3,4-dihydro-8-(2oxopropoxy)quinolin-2(1*H*)-one (2a) and 2,3,6,7-tetrahydro-3-hydroxy-3-methyl-5*H*pyrido[1,2,3-de][1,4]benzoxazin-5-one (**3a**) in a ratio of 1:2.84 (75% yield). Compounds 2a and 3a are interconvertible: when the mixture was subjected to a *Reformatsky*-type condensation, 4a was obtained in 70% yield. Accordingly, 1 was reacted with 2-bromoacetophenone, 2-bromo-4'-fluoroacetophenone, and 2-bromo-4'phenylacetophenone, respectively, under the same reaction conditions to give 2b - dand 3b - d in ratios of 1.32:1 to 1.43:1, based on the integration of CH₂O ¹H-NMR signals. An electron-donating substituent (R = 4-MeO $-C_6H_4$) retarded ring cyclization, and only 2e was isolated, while an electron-withdrawing substituent (R=4- $NO_2 - C_6H_4$) favored the formation of **3f**. That alkylation of **1** occurred at HO - C(8) rather than at N(1) or C(2)=O was shown by the ${}^{1}H,{}^{13}C$ -HETCOR spectrum, which reveals the correlation of $CH_2(1')$ protons (5.53 ppm, *singlet*) with C-atoms resonating at 71.50 (¹J) and 144.87 (³J), corresponding to C(1') and C(8). The structure of **3f** was confirmed by the ¹H-NMR spectrum in which the $CH_2(2)$ protons are magnetically nonequivalent, and two distinct *doublets* (J = 11.4 Hz) at 3.80 and 3.99 ppm (AB type) were observed. Furthermore, the ¹H,¹³C-HETCOR spectrum revealed the correlation of CH₂(2) protons with C-atoms resonating at 74.35 $({}^{1}J)$, 83.04 $({}^{2}J)$, and 144.53 $({}^{3}J)$ ppm, corresponding to C(2), C(3), and C(11), respectively. *Reformatsky*-type condensation of 2b-d and 3b-d afforded 3,4-dihydro-8-[(2,3,4,5-tetrahydro-4-meth-

ylidene-5-oxofuran-2-yl)methoxy]quinolin-2(1*H*)-ones $4\mathbf{b} - \mathbf{d}$, respectively, in 65–68% yield, indicating that $2\mathbf{b} - \mathbf{d}$ and the corresponding tricyclic counterparts $3\mathbf{b} - \mathbf{d}$ are interconvertible. Accordingly, $4\mathbf{e}$ and $4\mathbf{f}$ were prepared from $2\mathbf{e}$ and $3\mathbf{f}$, respectively, *via Reformatsky*-type condensation. The 6- and 7-substituted analogs $9\mathbf{a} - \mathbf{h}$ and $10\mathbf{a} - \mathbf{d}$ were also obtained from the corresponding 3,4-dihydroquinolin-2(1*H*)-ones 5 and 6 [10] *via* alkylation and *Reformatsky*-type condensation (*Scheme 2*).

The antiplatelet activities of α -methylidene- γ -butyrolactones with 3,4-dihydroquinolin-2(1*H*)-one moieties were evaluated in washed rabbit platelets. Platelet aggregation was induced by thrombin (Thr, 0.1 U/ml), arachidonic acid (AA, 100 µM), collagen (Col, 10 µg/ml), and platelet-activating factor (PAF, 2 nM). The final concentration of compounds was 100 µg/ml, and the results are shown in *Table 1*.

Table 1. Effect of 3,4-Dihydroquinolin-2(1H)-ones on the Platelet Aggregation ([%]) Induced by Thrombin (Thr), Arachidonic Acid (AA), Collagen (Col) and Platelet-Activating Factor (PAF) in Washed Rabbit Platelets^a)

Compounds	Inducer						
	Thr (0.1 U/ml)	АА (100 µм)	Col (10 µg/ml)	РАF (2 nм)			
Control	90.5 ± 0.8	87.1 ± 0.1	90.0 ± 0.7	88.7 ± 0.9			
4a	$69.7\pm3.5^{\rm b}$	0 ^b)	0	68.5 ± 6.3^{b})			
4b ^c)	0	0	0	0			
4d	75.7 ± 2.2^{b})	0	0	32.6 ± 6.0^{b})			
9a	2.9 ± 1.2^{b})	0	0	0			
9d	53.6 ± 4.8^{b}	0	5.5 ± 2.3^{b})	0			
9e	6.2 ± 5.0^{b}	0	0	0			
10a	8.9 ± 7.2^{b}	0	0	7.8 ± 3.6^{b})			
Aspirin	91.9 ± 1.4	0	85.4 ± 3.9	90.5 ± 1.2			

^a) Platelets were preincubated with 3,4-dihydroquinolin-2(1*H*)-ones (100 µg/ml) or DMSO (0.5%, control) at 37° for 3 min, and the inducer was then added. Percentages of aggregation are presented as means \pm standard errors of the mean (n = 3-7). ^b) Significantly different from control value at p < 0.001. ^c) Platelet aggregation induced by the four inducers was completely inhibited by 4b, 4c, 4e, 4f, 9b, 9c, 9g, 9h, 10b-d.

All of the tested compounds were found to completely inhibit platelet aggregation induced by AA and Col. Compounds **4b**, **4c**, **4e**, **4f**, **9b**–**c**, **9g**, **9h**, and **10b**–**d** also exhibited good inhibitory activity against Thr- and PAF-induced aggregation. The inhibitory concentrations for 50% aggregation (IC_{50}) induced by AA and PAF are given in *Table 2*.

Table 2. IC₅₀ Values ([µM]) of 3,4-Dihydroquinolin-2(1H)-ones on the Platelet Aggregation Induced by AA and PAF

	4 a	4b	4c	4d	4 e	4f	
AA	35.73	4.39	3.75	7.73	8.20	3.40	
PAF	> 100	21.7	15.6	78.03	35.46	8.63	
b) 6-Sub.	stituted 3,4-dihydro	oquinolin-2(1H	()-ones				
	9a	9b	9c	9d	9e	9g	9h
AA	1.64	0.57	0.60	3.29	1.01	0.57	0.63
PAF	13.29	2.33	1.83	6.23	7.24	2.30	2.30
c) 7-Subs	stituted 3,4-dihydro	oquinolin-2(1H)-ones				
	10a	10b	10c	10d			
AA	2.31	0.23	0.28	1.91			
PAF	51.37	6.13	3.54	11.44			

a) 8-Substituted 3,4-dihydroquinolin-2(1H)-ones

Compound 4a, with a Me substituent at C(2') of the lactone moiety, was less active against AA- and PAF-induced aggregation than its PhC(2')-lactone counterparts (4b – f). Compounds 4c and 4f, which possess electron-withdrawing substituents (F and NO₂, resp.), were found to be more potent than that of onyl-Ph-substituted 4b, while 4d and 4e, which possess an electron-donating substituent (Ph and MeO, resp.), were even less active. Comparison of the positional isomers showed that 6- and 7-substituted derivatives 9a - d and 10a - d are more potent than the respective 8-substituted isomers 4a - d in inhibiting both AA- and PAF-induced aggregations.

In summary, the lower inhibitory potency of **4d**, **9d**, and **10d** implies that an electron-donating aryl substituent at C(2') of the lactone moiety reduces the antiplatelet activity of compounds of this type. For AA-induced platelet aggregation, the inhibitory potency decreases in the order 7-substituted > 6-substituted > 8-substituted. For PAF-induced platelet aggregation, the inhibitory potency decreases in the order 6-substituted > 7-substituted > 8-substituted. All of these α -methylidene- γ -butyrolactones bearing 3,4-dihydroquinolin-2(1*H*)-ones are more potent than their respective unsaturated counterparts [3].

We gratefully acknowledge financial support from the National Science Council of the Republic of China.

Experimental Part

General. TLC: precoated (0.2 mm) silica gel 60 F_{254} plates from *EM Laboratories, Inc.*; detection by UV light (254 nm). M.p.: *Electrothermal IA-9000* micromelting-point apparatus; uncorrected. UV Spectra (λ_{max} (log ε) in nm): *Beckman* UV-VIS spectrophotometer. ¹H- and ¹³C-NMR spectra: *Varian-Gemini-200* spectrometer, δ in ppm with Me₄Si as an internal standard. Elemental analyses were carried out on a *Heraeus CHN-O-Rapid* elemental analyzer, and results were within +/- 0.4% of calc. values.

3,4-Dihydro-8-(2-oxopropox) quinolin-2(1H)-one (2a) and 2,3,6,7-Tetrahydro-3-hydroxy-3-methyl-5Hpyrido[1,2,3-de][1,4]benzoxazin-5-one (3a). 3,4-Dihydro-8-hydroxyquinolin-2(1H)-one (1, 1.63 g, 10 mmol), K_2CO_3 (1.38 g, 10 mmol) and dry DMF (50 ml) were stirred at r.t. for 30 min. To this soln., chloroacetone (0.92 g, 10 mmol) in dry DMF (10 ml) was added in one portion. The resulting mixture was stirred at r.t. for 24 h (TLC monitoring) and then poured into ice-water (100 ml). The white solid thus obtained was collected and purified by column chromatography (CC) (silica gel; hexane/AcOEt 1:1), affording a residual solid which was crystallized from CH₂Cl₂/Et₂O 1:10: **2a** and **3a** (1:2.84; 1.64 g, 75%). ¹H-NMR (DMSO): 4.79 (s, 2 H–C(1') of **2a**); 3.78, 3.91 (2*d*, J = 11.2, AB type, 2 H–C(2) of **3a**). ¹³C-NMR (DMSO): 73.44 (C(1')); 169.60 (C(2)); 204.71 (C(2') of **2a**); 73.51 (C(2)); 82.12 (C(3)); 169.53 (C(5) of **3a**). Anal. calc. for C₁₂H₁₃NO₃: C 65.74, H 5.98, N 6.39; found: C 65.73, H 6.02, N 6.42.

3,4-Dihydro-8-(2-oxo-2-phenylethoxy)quinolin-2(1H)-one (**2b**) and 2,3,6,7-Tetrahydro-3-hydroxy-3-phenyl-5H-pyrido[1,2,3-de][1,4]benzoxazin-5-one (**3b**). A mixture of **2b** and **3b** (1.39:1) was obtained from **1** and 2-bromoacetophenone, according to the procedure described above, in 74% yield. ¹H-NMR (DMSO): 5.60 (s, 2H-C(1') of **2b**); 3.80, 3.96 (2d, J = 11.6, AB type, 2H-C(2) of **3b**). ¹³C-NMR (DMSO): 71.70 (C(1')); 169.54 (C(2)); 194.98 (C(2') of **2b**); 74.82 (C(2)); 84.05 (C(3)); 168.74 (C(5) of **3b**). Anal. calc. for C₁₇H₁₅NO₃: C 72.58, H 5.38, N 4.98; found: C 72.61, H 5.37, N 4.97.

8-[2-(4-Fluorophenyl)-2-oxoethoxy]-3,4-dihydroquinolin-2(1H)-one (**2c**) and 3-(4-Fluorophenyl)-2,3,6,7tetrahydro-3-hydroxy-5H-pyrido[1,2,3-de][1,4]benzoxazin-5-one (**3c**). A mixture of **2c** and **3c** (1.43 :1) was obtained from **1** and 2-bromo-4'-fluoroacetophenone, according to the procedure described above, in 80% yield. ¹H-NMR (DMSO): 5.58 (s, 2 H–C(1') of **2c**); 3.80, 3.95 (2d, J=11.4, AB type, 2 H–C(2) of **3c**). ¹³C-NMR (DMSO): 71.62 (C(1')); 169.56 (C(2)); 193.66 (C(2') of **2c**); 74.75 (C(2)); 83.61 (C(3)); 168.66 (C(5) of **3c**). Anal. calc. for C₁₇H₁₄FNO₃: C 68.22, H 4.71, N 4.68; found: C 68.07, H 4.72, N 4.66.

8-[2-(1,1'-Biphenyl-4-yl)-2-oxoethoxy]-3,4-dihydroquinolin-2(1H)-one (2d) and 3-(1,1'-Biphenyl-4-yl)-2,3,6,7-tetrahydro-3-hydroxy-5H-pyrido[1,2,3-de][1,4]benzoxazin-5-one (3d). A mixture of 2d and 3d (1.32:1) was obtained from 1 and 2-bromo-4'-phenylacetophenone, according to the procedure described above, in 84% yield. ¹H-NMR (DMSO): 5.64 (s, 2H-C(1') of 2d); 3.85, 4.00 (2d, J = 11.2, AB type, 2 H-C(2) of 3d). ¹³C-NMR (DMSO): 71.72 (C(1')); 169.51 (C(2)); 194.53 (C(2') of 2d); 74.75 (C(2)); 83.89 (C(3)); 168.71 (C(5) of 3d). Anal. calc. for C₂₃H₁₉NO₃ · H₂O: C 73.58, H 5.64, N 3.73; found: C 73.33, H 5.72, N 3.74.

3,4-Dihydro-8-[2-(4-methoxyphenyl)-2-oxoethoxy]quinolin-2(1H)-one (2e). Compound 2e was obtained from 1 and 2-bromo-4'-methoxyacetophenone, according to the procedure described above, in 77% yield. M.p. 169–170°. ¹H-NMR (DMSO): 2.45–2.52 (m, 2 H–C(3)); 2.85–2.93 (m, 2 H–C(4)); 3.86 (s, MeO); 5.53 (s, 2 H–C(1')); 6.84–8.04 (m, 7 arom. H); 8.95 (br. s, NH). ¹³C-NMR (DMSO): 24.84 (C(4)); 30.41 (C(3)); 55.61 (MeO); 71.50 (C(1')); 112.06; 114.07; 120.56; 122.06; 124.68; 127.07; 127.49; 130.28; 144.87 (C(8)); 163.65; 169.51 (C(2)); 193.31 (C(2')). Anal. calc. for C₁₈H₁₇NO₄: C 69.44, H 5.51, N 4.50; found: C 69.11, H 5.48, N 4.48.

2,3,6,7-*Tetrahydro-3-hydroxy-3-(4-nitrophenyl)-*5H-*pyrido*[1,2,3-de][1,4]*benzoxazin-5-one* (**3f**). Compound **3f** was obtained from **1** and 2-bromo-4'-nitroacetophenone, according to the procedure described above, in 74% yield. M.p. 183–184°. ¹H-NMR (DMSO): 2.50–2.56 (m, 2 H–C(6)); 2.56–3.08 (m, 2 H–C(7)); 3.80, 3.99 (2d, J = 11.4, AB type, 2 H–C(2)); 6.91–8.22 (m, 7 arom. H); 7.14 (s, OH). ¹³C-NMR (DMSO): 24.18 (C(7)); 31.86 (C(6)); 74.35 (C(2)); 83.04 (C(3)); 115.41; 121.38; 122.95; 123.24; 125.94; 126.30; 126.52; 144.53 (C(11)); 146.70; 149.44; 168.21 (C(5)). Anal. calc. for C₁₇H₁₄N₂O₅: C 62.58, H 4.32, N 8.58; found: C 62.40, H 4.36, N 8.50.

3,4-Dihydro-6-(2-oxopropox) quinolin-2(1H)-one (7a). Compound 7a was obtained from 5a and chloroacetone, according to the procedure described above, in 78% yield. M.p. $125-126^{\circ}$. ¹H-NMR (DMSO): 2.14 (*s*, Me); 2.36-2.44 (*m*, 2 H–C(3)); 2.79-2.86 (*m*, 2 H–C(4)); 4.72 (*s*, 2 H–C(1')); 6.66-6.79 (*m*, 3 arom. H); 9.92 (br. *s*, NH). ¹³C-NMR (DMSO): 25.10 (C(4)); 26.27 (Me); 30.35 (C(3)); 72.50 (C(1')); 113.03; 114.10; 115.81; 124.97; 132.14; 153.02 (C(6)); 169.96 (C(2)); 204.57 (C(2')). Anal. calc. for C₁₂H₁₃NO₃: C 65.74, H 5.98, N 6.39; found: C 65.61, H 5.98, N 6.41.

*3,4-Dihydro-6-(2-oxo-2-phenylethoxy)quinolin-2(1*H)*-one* (**7b**). Compound **7b** was obtained from **5b** and 2-bromoacetophenone, according to the procedure described above, in 85% yield. M.p. 111–112°. ¹H-NMR (DMSO): 2.37–2.44 (m, 2 H–C(3)); 2.79–2.86 (m, 2 H–C(4)); 5.49 (s, 2 H–C(1')); 6.77–8.04 (m, 8 arom. H); 9.93 (br. s, NH). ¹³C-NMR (DMSO): 25.14 (C(4)); 30.39 (C(3)); 70.53 (C(1')); 113.27; 114.27; 115.83; 124.93; 127.94; 128.93; 132.14; 133.87; 134.50; 153.25 (C(6)); 169.99 (C(2)); 194.91 (C(2')). Anal. calc. for C₁₇H₁₅NO₃: C 72.58, H 5.38, N 4.98; found: C 72.44, H 5.42, N 4.98.

6-[2-(4-Fluorophenyl)-2-oxoethoxy]-3,4-dihydroquinolin-2(1H)-one (7c). Compound 7c was obtained from **5c** and 2-bromo-4'-fluoroacetophenone, according to the procedure described above, in 94% yield. M.p. 214–215°. ¹H-NMR (DMSO): 2.35–2.43 (m, 2 H–C(3)); 2.78–2.85 (m, 2 H–C(4)); 5.46 (s, 2 H–C(1')); 6.75–8.12 (m, 7 arom. H); 9.91 (br. s, NH). ¹³C-NMR (DMSO): 25.12 (C(4)); 30.37 (C(3)); 70.47 (C(1')); 113.27; 114.26; 115.75; 115.81; 116.18; 124.93; 130.93; 131.12; 131.24; 131.29; 132.17; 153.19 (C(6)); 162.87; 167.89; 169.97 (C(2)); 193.57 (C(2')). Anal. calc. for C₁₇H₁₄FNO₃: C 68.22, H 4.71, N 4.68; found: C 68.02, H 4.72, N 4.71.

6-[2-(1,1'-Biphenyl-4-yl)-2-oxoethoxy]-3,4-dihydroquinolin-2(1H)-one (7d). Compound 7d was obtained from 5d and 2-bromo-4'-phenylacetophenone, according to the procedure described above, in 87% yield. M.p.

182–183°. ¹H-NMR (DMSO): 2.36–2.43 (m, 2 H–C(3)); 2.78–2.86 (m, 2 H–C(4)); 5.51 (s, 2 H–C(1')); 6.77–8.11 (m, 12 arom. H); 9.93 (br. s, NH). ¹³C-NMR (DMSO): 25.14 (C(4)); 30.38 (C(3)); 70.56 (C(1')); 113.27; 114.26; 115.83; 124.94; 127.07; 127.10; 128.60; 128.71; 129.22; 132.14; 133.29; 138.90; 145.19; 153.25 (C(6)); 169.98 (C(2)); 194.45 (C(2')). Anal. calc. for C₂₃H₁₉NO₃: C 77.29, H 5.36, N 3.92; found: C 77.09, H 5.41, N 3.90.

*3,4-Dihydro-6-[2-(4-methoxyphenyl)-2-oxoethoxy]quinolin-2(1*H)-*one* (**7e**). Compound **7e** was obtained from **5e** and 2-bromo-4'-methoxyacetophenone, according to the procedure described above, in 96% yield. M.p. 179–180°. ¹H-NMR (DMSO): 2.38–2.42 (m, 2 H–C(3)); 2.80–2.84 (m, 2 H–C(4)); 3.86 (MeO); 5.40 (s, 2 H–C(1')); 6.75–8.01 (m, 7 arom. H); 9.91 (br. s, NH). ¹³C-NMR (DMSO): 25.11 (C(4)); 30.34 (C(3)); 55.65 (MeO); 70.28 (C(1')); 113.21; 114.09; 114.23; 115.77; 124.87; 127.41; 130.28; 132.07; 153.29 (C(6)); 163.59; 169.91 (C(2)); 193.18 (C(2')). Anal. calc. for C₁₈H₁₇NO₄: C 69.44, H 5.51, N 4.50; found: C 69.16, H 5.56, N 4.43.

6-[2-(4-Chlorophenyl)-2-oxoethoxy]-3,4-dihydroquinolin-2(1H)-one (7g). Compound 7g was obtained from 5g and 2-bromo-4'-chloroacetophenone, according to the procedure described above, in 76% yield. M.p. 212–213°. ¹H-NMR (DMSO): 2.37–2.44 (m, 2 H–C(3)); 2.79–2.86 (m, 2 H–C(4)); 5.48 (s, 2 H–C(1')); 6.77–8.05 (m, 7 arom. H); 9.93 (br. s, NH). ¹³C-NMR (DMSO): 25.12 (C(4)); 30.38 (C(3)); 70.53 (C(1')); 113.27; 114.26; 115.82; 124.94; 129.03; 129.91; 132.19; 133.17; 138.74; 153.15 (C(6)); 169.98 (C(2)); 194.04 (C(2')). Anal. calc. for C₁₇H₁₄ClNO₃: C 64.66, H 4.47, N 4.44; found: C 64.47, H 4.45, N 4.44.

6-[2-(4-Bromophenyl)-2-oxoethoxy]-3,4-dihydroquinolin-2(IH)-one (**7h**). Compound **7h** was obtained from **5h** and 2-bromo-4'-bromoacetophenone, according to the procedure described above, in 75% yield. M.p. 198–199°. ¹H-NMR (DMSO): 2.36–2.44 (m, 2 H–C(3)); 2.79–2.86 (m, 2 H–C(4)); 5.47 (s, 2 H–C(1')); 6.76–7.97 (m, 7 arom. H); 9.92 (br. s, NH). ¹³C-NMR (DMSO): 25.13 (C(4)); 30.38 (C(3)); 70.51 (C(1')); 113.28; 114.27; 115.83; 124.96; 127.94; 130.00; 131.99; 132.20; 133.49; 153.15 (C(6)); 169.99 (C(2)); 194.27 (C(2')). Anal. calc. for C₁₇H₁₄BrNO₃: C 56.68, H 3.92, N 3.89; found: C 56.48, H 3.92, N 3.87.

3,4-Dihydro-7-(2-oxopropox) quinolin-2(1H)-one (8a). Compound 8a was obtained from 6a and chloroacetone, according to the procedure described above, in 72% yield. M.p. $136-137^{\circ}$. ¹H-NMR (DMSO): 2.14 (*s*, Me); 2.38-2.45 (*m*, 2 H–C(3)); 2.75-2.82 (*m*, 2 H–C(4)); 4.71 (*s*, 2 H–C(1')); 6.40-7.06 (*m*, 3 arom. H); 9.97 (br. *s*, NH). ¹³C-NMR (DMSO): 23.97 (C(4)); 26.20 (Me); 30.67 (C(3)); 72.18 (C(1')); 101.92; 107.30; 116.15; 128.38; 139.21; 156.95 (C(7)); 170.31 (C(2)); 204.19 (C(2')). Anal. calc. for C₁₂H₁₃NO₃: C 65.74, H 5.98, N 6.39; found: C 65.74, H 6.03, N 6.36.

3,4-Dihydro-7-(2-oxo-2-phenylethoxy)quinolin-2(1H)-one (**8b**). Compound **8b** was obtained from **6b** and 2-bromoacetophenone, according to the procedure described above, in 84% yield. M.p. 181–182°. ¹H-NMR (DMSO): 2.37–2.45 (m, 2 H–C(3)); 2.75–2.82 (m, 2 H–C(4)); 5.50 (s, 2 H–C(1')); 6.45–8.04 (m, 8 arom. H); 9.96 (br. s, NH). ¹³C-NMR (DMSO): 23.97 (C(4)); 30.67 (C(3)); 70.18 (C(1')); 102.01; 107.48; 116.04; 127.81; 128.29; 128.82; 133.77; 134.37; 139.16; 157.14 (C(7)); 170.22 (C(2)); 194.61 (C(2')). Anal. calc. for $C_{17}H_{15}NO_3 \cdot 0.125 H_2O$: C 72.01, H 5.42, N 4.94; found: C 72.01, H 5.42, N 4.82.

7-[2-(4-Fluorophenyl)-2-oxoethoxy]-3,4-dihydroquinolin-2(1H)-one (8c). Compound 8c was obtained from 6c and 2-bromo-4'-fluoroacetophenone, according to the procedure described above, in 78% yield. M.p. 190–191°. ¹H-NMR (DMSO): 2.38–2.45 (m, 2 H–C(3)); 2.75–2.82 (m, 2 H–C(4)); 5.48 (s, 2 H–C(1')); 6.45–8.14 (m, 7 arom. H); 9.96 (br. s, NH). ¹³C-NMR (DMSO): 24.01 (C(4)); 30.71 (C(3)); 70.16 (C(1')); 102.08; 107.52; 115.72; 116.15; 128.35; 130.87; 131.06; 131.14; 131.20; 139.19; 157.14 (C(7)); 162.84; 167.86; 170.32 (C(2)); 193.36 (C(2')). Anal. calc. for C₁₇H₁₄FNO₃: C 68.22, H 4.71, N 4.68; found: C 68.08, H 4.76, N 4.67.

7-[2-(1,1'-Biphenyl-4-yl)-2-oxoethoxy]-3,4-dihydroquinolin-2(1H)-one (8d). Compound 8d was obtained from 6d and 2-bromo-4'-phenylacetophenone, according to the procedure described above, in 80% yield. M.p. 187–188°. ¹H-NMR (DMSO): 2.38–2.45 (m, 2 H–C(3)); 2.75–2.83 (m, 2 H–C(4)); 5.53 (s, 2 H–C(1')); 6.47–8.12 (m, 12 arom. H); 9.97 (br. s, NH). ¹³C-NMR (DMSO): 24.01 (C(4)); 30.70 (C(3)); 70.24 (C(1')); 102.04; 107.56; 116.09; 127.04; 128.35; 128.53; 128.61; 129.14; 133.18; 138.82; 139.19; 145.17; 157.19 (C(7)); 170.30 (C(2)); 194.21 (C(2')). Anal. calc. for C₂₃H₁₉NO₃·0.125 H₂O: C 76.81, H 5.39, N 3.90; found: C 76.75, H 5.43, N 3.89.

3,4-Dihydro-8-[(2,3,4,5-tetrahydro-2-methyl-4-methylidene-5-oxofuran-2-yl)methoxy]quinolin-2(1H)-one (4a). To a soln. of 2a and 3a (0.66 g, 3 mmol) in dry THF (60 ml), activated Zn powder (0.26 g, 3.9 mmol), hydroquinone (6 mg), and ethyl 2-(bromomethyl)acrylate (0.78 g, 4 mmol) were added. The mixture was refluxed under N₂ for 6 h (TLC monitoring). After cooling, it was poured into ice-cold 5% HCl soln. (300 ml) and extracted with CH_2Cl_2 (3 × 60 ml). The combined CH_2Cl_2 extracts were washed with H_2O , dried (Na₂SO₄), and evaporated to give a residual solid which was purified by CC on silica gel using CH_2Cl_2 /acetone 5:1. The proper fractions were combined and evaporated, furnishing a residual solid, which was crystallized from CH_2Cl_2 to afford **4a** (0.60 g, 70%). Colorless crystals. M.p. 178–179°. UV (0.1n HCl/MeOH): 249 (3.99), 284 (3.63). UV (MeOH): 249 (3.95), 285 (3.58). UV (0.1n NaOH/MeOH): 249 (3.98), 284 (3.63). ¹H-NMR (CDCl₃): 1.58 (*s*, Me); 2.59–2.63 (*m*, 2 H–C(3)); 2.81 (*dt*, *J* = 17.2, 2.8, 1 H–C(3')); 2.93–2.97 (*m*, 2 H–C(4)); 3.16 (*dt*, *J* = 16.8, 2.4, 1 H–C(3')); 3.95, 4.09 (2*d*, *J* = 9.6, *AB* type, CH₂O); 5.75 (*t*, *J* = 2.4, 1 H, CH₂=C(4')); 6.37 (*t*, *J* = 2.4, 1 H, CH₂=C(4')); 6.72–6.94 (*m*, 3 arom. H); 7.55 (br. *s*, NH). ¹³C-NMR (CDCl₃): 23.95 (Me); 25.36 (C(4))); 30.53 (C(3)); 37.01 (C(3')); 73.66 (CH₂O); 81.11 (C(2')); 109.93; 120.88; 122.48; 122.64; 124.48; 126.62; 135.27; 144.32 (C(8)); 169.16 (C(5')); 170.09 (C(2)). Anal. calc. for C₁₆H₁₇NO₄: C 66.88, H 5.92, N 4.88; found: C 66.71, H 6.05, N 4.88.

The same procedure was used to convert each of the compounds 2b - f and 3b - f to the follow-up products 4b - f; 7a - e and 7g to 9a - e and 9g; and 8a - d to 10a - d, resp.

3,4-Dihydro-8-[(2,3,4,5-tetrahydro-4-methylidene-5-oxo-2-phenylfuran-2-yl)methoxy]quinolin-2(1H)-one (**4b**). Yield: 65%. M.p. 212–213°. UV (0.1N HCl/MeOH): 249 (4.00), 284 (3.61). UV (MeOH): 249 (3.97), 285 (3.57). UV (0.1N NaOH/MeOH): 249 (4.00), 284 (3.63). ¹H-NMR (CDCl₃): 2.54–2.62 (m, 2 H–C(3)); 2.89–2.97 (m, 2 H–C(4)); 3.25 (dt, J = 16.8, 3.0, 1 H–C(3')); 3.64 (dt, J = 16.8, 2.2, 1 H–C(3')); 4.13, 4.27 (2d, J = 10.2, AB type, CH₂O); 5.82 (t, J = 2.8, 1 H, CH₂=C(4')); 6.44 (t, J = 2.8, 1 H, CH₂=C(4')); 6.64–7.49 (m, 8 arom. H); 7.45 (br. *s*, NH). ¹³C-NMR (CDCl₃): 25.35 (C(4)); 30.51 (C(3)); 37.61 (C(3')); 75.10 (CH₂O); 84.07 (C(2')); 110.11; 120.96; 122.33; 122.53; 124.50; 124.93; 126.74; 128.73; 128.79; 128.90; 134.89; 139.65; 144.26 (C(8)); 168.78 (C(5')); 169.95 (C(2)). Anal. calc. for C₂₁H₁₉NO₄: C 72.19, H 5.48, N 4.01; found: C 72.07, H 5.62, N 4.02.

$$\begin{split} & 8 - \{[2-(4-Fluorophenyl)-2,3,4,5-tetrahydro-4-methylidene-5-oxofuran-2-yl]methoxy\}-3,4-dihydroquinolin-2(IH)-one (4c). Yield: 66%. M.p. 168-169°. UV (0.1N HCl/MeOH). 249 (4.00), 284 (3.61). UV (MeOH): 249 (4.00), 285 (3.59). UV (0.1N NaOH/MeOH). 249 (4.02), 285 (3.64). ¹H-NMR (CDCl₃): 2.57-2.62 (<math>m, 2 H-C(3)$$
); 2.91-2.96 (m, 2 H-C(4)); 3.22 (dt, J=16.8, 3.2, 1 H-C(3')); 3.62 (dt, J=16.8, 2.4, 1 H-C(3')); 4.10, 4.24 (2d, J=10.4, AB type, CH₂O); 5.83 ($t, J=2.8, 1 H, CH_2=C(4')$); 6.45 ($t, J=2.8, 1 H, CH_2=C(4')$); 6.66-7.49 (m, 7 arom. H); 7.45 (br. *s*, NH). ¹³C-NMR (CDCl₃): 25.37 (C(4)); 30.51 (C(3)); 37.66 (C(3')); 75.04 (CH₂O); 83.65 (C(2')); 110.13; 115.83; 116.04; 121.09; 122.57; 122.63; 124.58; 126.76; 126.87; 126.96; 134.65; 135.53; 135.57; 144.18 (C(8)); 161.49; 163.96; 168.57 (C(5')); 169.97 (C(2)). Anal. calc. for C₂₁H₁₈FNO₄: C 68.65, H 4.94, N 3.81; found: C 68.58, H 5.01, N 3.83.

$$\begin{split} & 8 - [[2-(1,1'-Biphenyl-4-yl)-2,3,4,5-tetrahydro-4-methylidene-5-oxofuran-2-yl]methoxy]-3,4-dihydroquinolin-2(IH)-one ($$
4d). Yield: 68%. M.p. 162 – 163°. UV (0.1N HCl/MeOH). 251 (4.66). UV (MeOH): 250 (4.61). UV (0.1N NaOH/MeOH): 250 (4.64). ¹H-NMR (CDCl₃): 2.57 – 2.62 (m, 2 H – C(3)); 2.91 – 2.96 (m, 2 H – C(4)); 3.29 (dt,*J*= 17.2, 2.8, 1 H – C(3')); 3.66 (dt,*J*= 16.8, 2.4, 1 H – C(3')); 4.16, 4.31 (2d,*J*= 10.0,*AB*type, CH₂O); 5.84 (t,*J*= 2.8, 1 H, CH₂=C(4')); 6.46 (t,*J*= 2.4, 1 H, CH₂=C(4')); 6.68 – 7.69 (m, 12 arom. H); 7.49 (br. s, NH). ¹³C-NMR (CDCl₃): 25.37 (C(4)); 30.53 (C(3)); 37.62 (C(3')); 75.07 (CH₂O); 84.03 (C(2')); 110.18; 121.01; 122.46; 122.56; 124.54; 125.45; 126.79; 127.10; 127.59; 127.72; 128.88; 134.85; 138.55; 140.08; 141.76; 144.29 (C(8)); 168.77 (C(5')); 169.97 (C(2)). Anal. calc. for C₂₇H₂₃NO₄: C 76.22, H 5.45, N 3.29; found: C 75.84, H 5.60, N 3.30.

3,4-Dihydro-8-{[2,3,4,5-tetrahydro-2-(4-methoxyphenyl)-4-methylidene-5-oxofuran-2-yl]methoxy]quinolin-2(IH)-one (**4e**). Yield: 70%. M.p. 148–149°. UV (0.1N HCl/MeOH): 249 (4.08), 280 (3.77). UV (MeOH): 249 (4.09), 280 (3.76): UV (0.1N NaOH/MeOH): 249 (4.09), 280 (3.78). ¹H-NMR (CDCl₃): 2.54–2.63 (m, 2 H-C(3)); 2.90–2.98 (m, 2 H-C(4)); 3.23 (dt, J=16.9, 3.1, 1H-C(3')); 3.59 (dt, J=16.8, 2.2, 1H-C(3')); 3.83 (s, MeO); 4.08, 4.24 (2d, AB type, $J=10.2, CH_2O$); 5.81 ($t, J=2.7, 1 H, CH_2=C(4')$); 6.43 ($t, J=2.5, 1 H, CH_2=C(4')$); 6.64–7.44 (m, 7 arom. H); 7.36 (br. s, NH). ¹³C-NMR (CDCl₃): 25.36 (C(4)); 30.53 (C(3)); 37.61 (C(3')); 55.36 (MeO); 75.13 (CH₂O); 83.96 (C(2')); 110.12; 112.28; 114.25; 120.93; 122.24; 122.53; 124.48; 126.30; 126.75; 131.60; 135.07; 144.29 (C(8)); 159.80; 168.87 (C(5')); 169.95 (C(2)). Anal. calc. for C₂₂H₂₁NO₅: C 69.64, H 5.58, N 3.69; found: C 69.49, H 5.68, N 3.69.

3,4-Dihydro-8-{[2,3,4,5-tetrahydro-4-methylidene-2-(4-nitrophenyl)-5-oxofuran-2-yl]methoxy]quinolin-2(IH)-one (**4f**). Yield: 66%. M.p. 192–193°. UV (0.1N HCl/MeOH): 252 (4.14). UV (MeOH): 252 (4.14). UV (0.1N NaOH/MeOH): 252 (4.14). ¹H-NMR (CDCl₃): 2.55–2.63 (m, 2 H–C(3)); 2.91–2.98 (m, 2 H–C(4)); 3.23 (dt, J = 16.8, 3.0, 1 H–C(3')); 3.70 (dt, J = 16.9, 2.2, 1 H–C(3')); 4.18, 4.29 (2d, J = 10.2, AB type, CH₂O); 5.88 (t, J = 2.8, 1 H, CH₂=C(4')); 6.48 (t, J = 2.8, 1 H, CH₂=C(4')); 6.65–8.34 (m, 7 arom. H); 7.44 (br. s, NH). ¹³C-NMR (CDCl₃): 25.34 (C(4)); 30.46 (C(3)); 37.52 (C(3')); 74.60 (CH₂O); 83.37 (C(2')); 110.20; 121.38; 122.63; 123.46; 124.16; 124.72; 126.23; 126.76; 133.71; 143.97 (C(8)); 146.54; 148.06; 168.05 (C(5')); 169.98 (C(2)). Anal. calc. for C₂₁H₁₈N₂O₆: C 63.96, H 4.60, N 7.10; found: C 63.78, H 4.67, N 7.07.

3,4-Dihydro-6-[(2,3,4,5-tetrahydro-2-methyl-4-methylidene-5-oxofuran-2-yl)methoxy]quinolin-2(1H)-one (**9a**). Yield: 81%. M.p. 135–136°. UV (0.1N HCl/MeOH): 255 (4.18). UV (MeOH): 255 (4.20). UV (0.1N

NaOH/MeOH): 255 (4.21). ¹H-NMR (CDCl₃): 1.54 (*s*, Me); 2.56–2.64 (*m*, 2 H–C(3)); 2.73 (*dt*, J = 16.1, 2.8, 1 H–C(3')); 2.88–2.96 (*m*, 2 H–C(4)); 3.17 (*dt*, J = 17.0, 2.6, 1 H–C(3')); 3.88, 3.96 (2*d*, J = 9.7, *AB* type, CH₂O); 5.66 (*t*, J = 2.4, 1 H, CH₂=C(4')); 6.27 (*t*, J = 2.9, 1 H, CH₂=C(4')); 6.69–6.71 (*m*, 3 arom. H); 8.32 (br. *s*, NH). ¹³C-NMR (CDCl₃): 24.07 (Me); 25.55 (C(4)); 30.49 (C(3)); 36.61 (C(3')); 73.42 (CH₂O); 81.41 (C(2')); 113.23; 114.75; 116.24; 121.95; 125.05; 131.54; 135.35; 154.20 (C(6)); 169.58 (C(5')); 171.64 (C(2)). Anal. calc. for C₁₆H₁₇NO₄; C 66.88, H 5.92, N 4.88; found: C 66.87, H 5.97, N 4.87.

3,4-Dihydro-6-[(2,3,4,5-tetrahydro-4-methylidene-5-oxo-2-phenylfuran-2-yl)methoxy]quinolin-2(1H)-one (**9b**). Yield: 90%. M.p. 113–114°. UV (0.1N HCl/MeOH): 255 (4.21). UV (MeOH): 256 (4.22). UV (0.1N NaOH/MeOH): 255 (4.22). ¹H-NMR (CDCl₃): 2.54–2.62 (m, 2 H–C(3)); 2.85–2.93 (m, 2 H–C(4)); 3.19 (dt, J = 17.0, 2.9, 1 H–C(3')); 3.65 (dt, J = 16.8, 2.6, 1 H–C(3')); 4.06, 4.13 (2d, J = 10.2, AB type, CH₂O); 5.68 (t, J = 2.5, 1 H, CH₂=C(4')); 6.29 (t, J = 2.8, 1 H, CH₂=C(4')); 6.60–7.47 (m, 8 arom. H); 8.91 (br. s, NH). ¹³C-NMR (CDCl₃): 25.52 (C(4)); 30.46 (C(3)); 37.25 (C(3')); 74.87 (CH₂O); 84.22 (C(2')); 113.35; 114.89; 116.17; 121.53; 125.01; 128.47; 128.72; 131.57; 134.91; 140.28; 154.12 (C(6)); 169.29 (C(5')); 171.56 (C(2)). Anal. calc. for C₂₁H₁₉NO₄: C 72.19, H 5.48, N 4.01; found: C 72.01, H 5.58, N 3.97.

 $6 - \{ [2-(4-Fluorophenyl)-2,3,4,5-tetrahydro-4-methylidene-5-oxofuran-2-yl]methoxyl-3,4-dihydroquinolin-2(IH)-one (9c). Yield: 81%. M.p. 130–131°. UV (0.1N HCl/MeOH): 255 (4.27). UV (MeOH): 255 (4.25). UV (0.1N NaOH/MeOH): 255 (4.27). ¹H-NMR (CDCl₃): 2.55–2.62 (m, 2 H–C(3)); 2.86–2.93 (m, 2 H–C(4)); 3.15 (dt,$ *J*= 16.8, 2.9, 1 H–C(3')); 3.63 (dt,*J*= 16.9, 2.4, 1 H–C(3')); 4.03, 4.10 (2d,*J*= 10.2,*AB*type, CH₂O); 5.69 (t,*J*= 2.4, 1 H, CH₂=C(4')); 6.30 (t,*J*= 2.7, 1 H, CH₂=C(4')); 6.60–7.49 (m, 7 arom. H); 8.72 (br. s, NH). ¹³C-NMR (CDCl₃): 25.56 (C(4)); 30.48 (C(3)); 37.35 (C(3')); 74.82 (CH₂O); 83.81 (C(2')); 113.38; 114.93; 115.50; 115.93; 116.19; 121.93; 125.14; 126.91; 127.08; 131.67; 134.66; 136.15; 136.21; 154.04 (C(6)); 160.14; 165.07; 169.10 (C(5')); 171.49 (C(2)). Anal. calc. for C₂₁H₁₈FNO₄: C 68.65, H4.94, N 3.81; found: C 68.39, H 5.04, N 3.78.

$$\begin{split} & 6 - [[(2-(1,1'-Biphenyl-4-yl)-2,3,4,5-tetrahydro-4-methylidene-5-oxofuran-2-yl]methoxyl-3,4-dihydroquinolin-2(IH)-one (9d). Yield: 90%. M.p. 206 - 207°. UV (0.1N HCl/MeOH): 254 (4.35). UV (MeOH): 254 (4.36). UV (0.1N NaOH/MeOH): 254 (4.36). ¹H-NMR (CDCl₃): 2.54 - 2.62 (m, 2 H - C(3)); 2.86 - 2.93 (m, 2 H - C(4)); 3.22 (dt, J = 16.9, 2.9, 1 H - C(3')); 3.67 (dt, J = 16.8, 2.4, 1 H - C(3')); 4.10, 4.17 (2d, J = 10.2, AB type, CH₂O); 5.69 (t, J = 2.4, 1 H, CH₂=C(4')); 6.31 (t, J = 2.7, 1 H, CH₂=C(4')); 6.63 - 7.67 (m, 12 arom. H); 8.71 (br.$$
s, NH). ¹³C-NMR (CDCl₃): 25.56 (C(4)); 30.49 (C(3)); 37.27 (C(3')); 74.84 (CH₂O); 84.17 (C(2')); 113.42; 114.94; 116.17; 121.68; 125.11; 125.54; 127.07; 127.43; 127.68; 128.87; 131.61; 134.88; 139.21; 140.16; 141.49; 154.15 (C(6)); 169.28 (C(5')); 171.46 (C(2)). Anal. calc. for C₂₇H₂₃NO₄: C 76.22, H 5.45, N 3.29; found: C 75.98, H 5.49, N 3.29.

3,4-Dihydro-6-{[2,3,4,5-tetrahydro-2-(4-methoxyphenyl)-4-methylidene-5-oxofuran-2-yl]methoxy]quinolin-2(IH)-one (**9e**). Yield: 74%. M.p. 128 – 129°. UV (0.1N HCl/MeOH): 255 (4.22). UV (MeOH): 256 (4.23). UV (0.1N NaOH/MeOH): 255 (4.22). ¹H-NMR (CDCl₃): 2.54 – 2.62 (m, 2 H – C(3)); 2.86 – 2.93 (m, 2 H – C(4)); 3.16 (dt, J = 16.9, 2.9, 1 H – C(3')); 3.61 (dt, J = 16.9, 2.4, 1 H – C(3')); 3.82 (s, MeO); 4.02, 4.10 (2d, J = 10.2, AB type, CH₂O); 5.67 (t, J = 2.4, 1 H, CH₂=C(4')); 6.28 (t, J = 2.7, 1 H, CH₂=C(4')); 6.61 – 7.41 (m, 7 arom. H); 8.60 (br. s, NH). ¹³C-NMR (CDCl₃): 25.54 (C(4)); 30.48 (C(3)); 37.22 (C(3')); 55.32 (MeO); 74.90 (CH₂O); 84.11 (C(2')); 113.36; 114.06; 114.91; 116.09; 121.43; 125.07; 126.35; 131.51; 132.26; 135.09; 154.15 (C(6)); 159.61; 169.36 (C(5')); 171.36 (C(2)). Anal. calc. for C₂₂H₂₁NO₅: C 69.64, H 5.58, N 3.69; found: C 69.35, H 5.66, N 3.65.

 $\begin{array}{l} 6 - \{[2-(4-Chlorophenyl)-2,3,4,5-tetrahydro-4-methylidene-5-oxofuran-2-yl]methoxyl-3,4-dihydroquinolin-2(IH)-one ($ **9**g). Yield: 85%. M.p. 169–170°. UV (0.1N HCl/MeOH): 256 (4.28). UV (MeOH): 255 (4.31). UV (0.1N NaOH/MeOH): 255 (4.29). ¹H-NMR (CDCl₃): 2.54–2.62 (m, 2 H–C(3)); 2.86–2.93 (m, 2 H–C(4)); 3.14 (dt, J = 16.9, 2.9, 1 H–C(3')); 3.63 (dt, J = 16.8, 2.4, 1 H–C(3')); 4.03, 4.10 (2d, J = 10.1, AB type, CH₂O); 5.70 (t, J = 2.5, 1 H, CH₂=C(4')); 6.30 (t, J = 2.9, 1 H, CH₂=C(4')); 6.60–7.41 (m, 7 arom. H); 8.65 (br. s, NH). ¹³C-NMR (CDCl₃): 25.56 (C(4)); 30.48 (C(3)); 37.26 (C(3')); 74.65 (CH₂O); 83.71 (C(2')); 113.37; 114.93; 116.16; 122.07; 122.15; 126.55; 128.94; 131.70; 134.46; 134.55; 138.85; 153.99 (C(6)); 168.99 (C(5')); 171.42 (C(2)). Anal. calc. for C₂₁H₁₈ClNO₄: C 65.71, H 4.72, N 3.65; found: C 65.46, H 4.77, N 3.63.

6-[[2-(4-Bromophenyl)-2,3,4,5-tetrahydro-4-methylidene-5-oxofuran-2-yl]methoxy]-3,4-dihydroquinolin-2(*I*H)-one (**9h**). Yield: 91%. M.p. 167–168°. UV (0.1N HCl/MeOH): 255 (4.15). UV (MeOH): 255 (4.15). UV (0.1N NaOH/MeOH): 255 (4.15). ¹H-NMR (CDCl₃): 2.57–2.60 (m, 2H–C(3)); 2.87–2.91 (m, 2 H–C(4)); 3.14 (dt, J = 16.8, 2.8, 1 H–C(3')); 3.62 (dt, J = 16.8, 2.4, 1 H–C(3')); 4.04, 4.09 (2d, J = 10.0, AB type, CH₂O); 5.70 (t, J = 2.4, 1 H, CH₂=C(4')); 6.30 (t, J = 2.8, 1 H, CH₂=C(4')); 6.61–7.57 (m, 7 arom. H); 8.84 (br. s, NH). ¹³C-NMR (CDCl₃): 25.53 (C(4)); 30.46 (C(3)); 37.20 (C(3')); 74.57 (CH₂O); 83.72 (C(2')); 113.36; 114.90; 116.19; 122.08; 122.66; 125.12; 126.84; 131.71; 131.88; 134.41; 139.37; 153.97 (C(6)); 168.95 (C(5')); 171.49 (C(2)). Anal. calc. for C₂₁H₁₈BrNO₄: C 58.89, H 4.24, N 3.27; found: C 58.70, H 4.21, N 3.25.

3,4-Dihydro-7-[(2,3,4,5-tetrahydro-2-methyl-4-methylidene-5-oxofuran-2-yl)methoxy]quinolin-2(1H)-one (**10a**). Yield: 77%. M.p. 138–139°. UV (0.1N HCl/MeOH): 251 (4.09). UV (MeOH): 251 (4.06). UV (0.1N NaOH/MeOH): 251 (4.09). ¹H-NMR (CDCl₃): 1.54 (*s*, Me); 2.58–2.65 (*m*, 2H–C(3)); 2.73 (*dt*, J = 17.2, 2.9, 1H–C(3')); 2.86–2.93 (*m*, 2 H–C(4)); 3.16 (*dt*, J = 17.1, 2.6, 1 H–C(3')); 3.89, 3.97 (2*d*, J = 9.6, *AB* type, CH₂O); 5.66 (*t*, J = 2.5, 1 H, CH₂=C(4')); 6.27 (*t*, J = 2.7, 1 H, CH₂=C(4')); 6.36–7.06 (*m*, 3 arom. H); 8.88 (br. *s*, NH). ¹³C-NMR (CDCl₃): 24.12 (Me); 24.53 (C(4)); 30.93 (C(3)); 36.62 (C(3')); 73.00 (CH₂O); 81.37 (C(2')); 102.46; 108.69; 116.64; 122.13; 128.67; 135.23; 138.29; 157.84 (C(7)); 169.54 (C(5')); 172.11 (C(2)). Anal. calc. for C₁₆H₁₇NO₄: C 66.88, H 5.92, N 4.88; found: C 66.81, H 6.01, N 4.91.

3,4-Dihydro-7-[(2,3,4,5-tetrahydro-4-methylidene-5-oxo-2-phenylfuran-2-yl)methoxy]quinolin-2(1H)-one (10b). Yield: 84%. M.p. 70–71°. UV (0.1N HCl/MeOH): 251 (4.01). UV (MeOH): 251 (3.96); UV (0.1N NaOH/MeOH): 251 (4.05). ¹H-NMR (CDCl₃): 2.55–2.63 (m, 2 H–C(3)); 2.84–2.91 (m, 2 H–C(4)); 3.18 (dt, J = 17.0, 2.9, 1 H–C(3')); 3.64 (dt, J = 16.9, 2.4, 1 H–C(3')); 4.07, 4.15 (2d, J = 10.2, AB type, CH₂O); 5.67 (t, J = 2.5, 1 H, CH₂=C(4')); 6.29 (t, J = 2.4, 1 H, CH₂=C(4')); 6.43–7.50 (m, 8 arom. H); 8.39 (br. s, NH). ¹³C-NMR (CDCl₃): 24.53 (C(4)); 30.91 (C(3)); 37.26 (C(3')); 74.46 (CH₂O); 84.16 (C(2')); 102.53; 108.84; 116.80; 121.69; 125.04; 128.50; 128.70; 128.74; 134.81; 138.20; 140.25; 157.76 (C(7)); 169.25 (C(5')); 171.77 (C(2)). Anal. calc. for C₂₁H₁₉NO₄: C 72.19, H 5.48, N 4.01; found: C 72.05, H 5.49, N 4.00.

7-[[2-(4-Fluorophenyl)-2,3,4,5-tetrahydro-4-methylidene-5-oxofuran-2-yl]methoxy]-3,4-dihydroquinolin-2(*I*H)-one (**10c**). Yield: 80%. M.p. 117 − 118°. UV (0.1N HCl/MeOH): 251 (3.96). UV (MeOH): 252 (3.92). UV (0.1N NaOH/MeOH): 252 (3.98). ¹H-NMR (CDCl₃): 2.57 − 2.61 (m,2 H−C(3)); 2.85 − 2.89 (m,2 H−C(4)); 3.15 (dt, J = 17.2, 2.8, 1 H−C(3')); 3.62 (dt, J = 16.8, 2.8, 1 H−C(3')); 4.05, 4.11 (2d, J = 10.4, AB type, CH₂O); 5.69 (t, J = 2.4, 1 H, CH₂=C(4')); 6.30 (t, J = 2.8, 1 H−C(3')); 6.32 −7.47 (m, 7 arom. H); 8.77 (br. s, NH). ¹³C-NMR (CDCl₃): 24.50 (C(4)); 30.86 (C(3)); 37.31 (C(3')); 74.34 (CH₂O); 83.75 (C(2')); 102.56; 108.88; 115.57; 115.78; 116.18; 116.87; 122.06; 126.96; 127.04; 128.69; 134.52; 136.11; 136.14; 138.25; 157.65 (C(7)); 161.35; 163.81; 169.06 (C(5')); 172.02 (C(2)). Anal. calc. for C₂₁H₁₈FNO₄ · H₂O: C 65.45, H 5.23, N 3.64; found: C 65.75, H 5.26, N 3.65.

7-[[2-(1,1'-Biphenyl-4-yl)-2,3,4,5-tetrahydro-4-methylidene-5-oxofuran-2-yl]methoxy]-3,4-dihydroquinolin-2(IH)-one (10d). Yield: 83%. M.p. 101 – 102°. UV (0.1N HCl/MeOH): 251 (4.47). UV (MeOH): 251 (4.49). UV (0.1N NaOH/MeOH): 252 (4.40). ¹H-NMR (CDCl₃): 2.55 – 2.58 (m,2 H–C(3)); 2.84 – 2.88 (m,2 H–C(4)); 3.22 (dt, J = 16.8, 2.9, 1 H–C(3')); 3.66 (dt, J = 16.8, 2.5, 1 H–C(3')); 4.11, 4.19 (2d, J = 10.2, AB type, CH₂O); 5.69 (t, J = 2.6, 1 H, CH₂=C(4')); 6.31 (t, J = 2.4, 1 H, CH₂=C(4')); 6.32 – 7.67 (m, 12 arom. H); 8.46 (br. s, NH). ¹³C-NMR (CDCl₃): 24.56 (C(4)); 30.92 (C(3)); 37.27 (C(3')); 74.39 (CH₂O); 84.12 (C(2')); 102.56; 108.86; 116.83; 121.85; 125.56; 127.09; 127.43; 127.67; 128.72; 128.87; 134.77; 138.24; 139.17; 140.17; 141.50; 157.77 (C(7)); 169.25 (C(5')); 171.81 (C(2)). Anal. calc. for C₂₇H₂₃NO₄: C76.22, H 5.45, N 3.29; found: C 76.25, H 5.47, N 3.28.

Antiplatelet-Activity Evaluation. Reagents: Collagen (type I, bovine Achilles tendon), obtained from Sigma Chem. Co., was homogenized in 25 mM AcOH and stored (1 mg/ml) at -70° . Platelet-activating factor (PAF) was purchased from Calbiochem-Behring Co. and dissolved in CHCl₃. Arachidonic acid (AA), EDTA, and bovine serum albumin were purchased from Sigma Chem. Co.

Platelet Aggregation. Blood was collected from the rabbit marginal ear vein, anticoagulated with EDTA (6 mM) and centrifuged for 10 min at 90 × g at r.t. A platelet suspension was prepared from this EDTAanticoagulated, platelet-rich plasma according to the washing procedures described in [11]. Platelet numbers were counted with a *Coulter* counter (model *ZM*) and adjusted to 4.5×10^8 platelets/ml. The platelet pellets were finally suspended in *Tyrode*'s soln. of the following composition (mM): NaCl (136.8), KCl (2.8), NaHCO₃ (11.9), MgCl₂ (2.1), NaH₂PO₄ (0.33), CaCl₂ (1.0), and glucose (11.2), containing bovine serum albumin (0.35%). The platelet suspension was stirred at 1200 rpm, and the aggregation was measured at 37° by the turbidimetric method as described by *O'Brien* [12] with a *Chrono-Log Lumi*-aggregometer. To eliminate the effect of the solvent on the aggregation, the final concentration of DMSO was fixed at 0.5%. Percentage of aggregation was calculated from the absorbance of platelet suspension as 0% aggregation and the absorbance of *Tyrode*'s solution as 100% aggregation. The inhibitory concentration for 50% aggregation (*IC*₅₀) was calculated with CA Cricket Graph III for five or six dose-effect levels.

REFERENCES

Y. L. Chen, T. C. Wang, K. H. Lee, Y. L. Chang, C. M. Teng, C. C. Tzeng, *Helv. Chim. Acta* 1996, 79, 651;
 Y. L. Chen, T. C. Wang, S. C. Liang, C. M. Teng, C. C. Tzeng, *Chem. Pharm. Bull.* 1996, 44, 1591; T. C.

Wang, Y. L. Chen, S. S. Liou, Y. L. Chang, C. M. Teng, C. C. Tzeng, *Helv. Chim. Acta* 1996, 79, 1620; S. S. Liou, Y. L. Zhao, Y. L. Chang, C. M. Teng, C. C. Tzeng, *Chem. Pharm. Bull.* 1997, 45, 1777; C. C. Tzeng, Y. L. Zhao, Y. L. Chen, S. S. Liou, T. C. Wang, Y. L. Chang, C. M. Teng, *Helv. Chim. Acta* 1997, 80, 2337.

- [2] Y. L. Chen, T. C. Wang, N. C. Chang, Y. L. Chang, C. M. Teng, C. C. Tzeng, Chem. Pharm. Bull. 1998, 46, 962.
- [3] C. C. Tzeng, T. C. Wang, Y. L. Chen, C. J. Wang, Y. L. Chang, C. M. Teng, *Helv. Chim. Acta* 1997, 80, 1161;
 T. C. Wang, Y. L. Chen, C. C. Tzeng, S. S. Liuo, W. F. Tzeng, Y. L. Chang, C. M. Teng, *Helv. Chim. Acta* 1998, 81, 1038;
 Y. L. Chen, T. C. Wang, K. C. Fang, N. C. Chang, C. C. Tzeng, *Heterocycles* 1999, 50, 453.
- [4] C. H. Liao, C. C. Tzeng, C. M. Teng, Eur. J. Pharmacol. 1998, 349, 107.
- [5] T. Nishi, K. Yamamoto, T. Shimizu, T. Kanbe, Y. Kimura, K. Nakagawa, Chem. Pharm. Bull. 1983, 31, 798.
- [6] M. Tomigawa, H. Ogawa, E. Yo, S. Yamashita, Y. Yabuuchi, K. Nakagawa, Chem. Pharm. Bull. 1987, 35, 3699.
- [7] T. Fujioka, S. Teramoto, T. Mori, T. Hosokawa, T. Sumida, M. Tominaga, Y. Yabuuchi, J. Med. Chem. 1992, 35, 3607.
- [8] T. Uno, Y. Ozeki, Y. Koga, G. N. Chu, M. Okada, K. Tamura, T. Igawa, F. Unemi, M. Kido, T. Nishi, Chem. Pharm. Bull. 1995, 43, 1724.
- [9] P. Desos, J. M. Lepagnol, P. Morain, P. Lestage, A. Cordi, J. Med Chem. 1996, 39, 197.
- [10] F. Mayer, L. van Zutphen, H. Philipps, Ber. Dtsch. Chem. Ges. 1927, 60, 858.
- [11] C. M. Teng, F. N. Ko, Thromb. Haemostasis 1988, 59, 304.
- [12] J. R. O'Brien, J. Clin. Pathol. 1962, 15, 452.

Received August 25, 1999